Without this change a saw an 18% increase in idle power consumption
on one deivce when trace support is compiled into the kernel. Now
I see the same increase only when tracing.
Change-Id: I21bb5ecf1b7d29ce3790ceeb5323409cc22d5a3b
Signed-off-by: Arve Hjønnevåg <arve@android.com>
If more than one ETM or PTM are present, configure all of them
and enable the formatter in the ETB. This allows tracing on dual
core systems (e.g. omap4).
Change-Id: I028657d5cf2bee1b23f193d4387b607953b35888
Signed-off-by: Arve Hjønnevåg <arve@android.com>
On some SOCs the read and write pointer are reset when the chip
resets, but the trace buffer content is preserved. If the status
bits indicates that the buffer is empty and we have never started
tracing, assume the buffer is full instead. This can be useful
if the system rebooted from a watchdog reset.
Change-Id: Iaf21c2c329c6059004ee1d38e3dfff66d7d28029
Signed-off-by: Arve Hjønnevåg <arve@android.com>
It is not safe to call etm_lock or etb_lock without holding the
mutex since another thread may also have unlocked the registers.
Also add some missing checks for valid etb_regs in the etm sysfs
entries.
Change-Id: I939f76a6ea7546a8fc0d4ddafa2fd2b6f38103bb
Signed-off-by: Arve Hjønnevåg <arve@android.com>
The old code enabled data tracing, but did not configure the
range. We now configure it to trace all data addresses by default,
and add a trace_data_range attribute to change the range or disable
data tracing.
Change-Id: I9d04e3e1ea0d0b4d4d5bcb93b1b042938ad738b2
Signed-off-by: Arve Hjønnevåg <arve@android.com>
Trace kernel text segment by default as before, allow tracing of other
ranges by writing a range to /sys/devices/etm/trace_range, or to trace
everything by writing 0 0.
Change-Id: Ibb734ca820fedf79560b20536247f1e1700cdc71
Signed-off-by: Arve Hjønnevåg <arve@android.com>
If the write address was at the end of the buffer, toggling the trace
capture bit would set the RAM-full status instead of clearing it, and
if any of the stop bits in the formatter is set toggling the trace
capture bit may not do anything.
Instead use the read position to find out if the data has already
been returned.
This also fixes the read function so it works when the trace buffer is
larger than the buffer passed in from user space. The old version
would reset the trace buffer pointers after every read, so the second
call to read would always return 0.
Change-Id: I75256abe2556adfd66fd5963e46f9e84ae4645e1
Signed-off-by: Arve Hjønnevåg <arve@android.com>
On some systems kernel code is considered secure, and this code
already limits tracing to the kernel text segment which results
in no trace data.
Change-Id: I098a0753e874859446d098e1ee209f67fc13cd5d
Signed-off-by: Arve Hjønnevåg <arve@android.com>
If clk_get fail, assume the etb does not need a separate clock.
Change-Id: Ia0bf3f5391e94a60ea45876aa7afc8a88a7ec3bf
Signed-off-by: Arve Hjønnevåg <arve@android.com>
The patch fixes the warning below:
WARNING: arch/arm/kernel/built-in.o(.data+0x27c): Section mismatch in reference from the variable etb_driver to the function .init.text:etb_probe()
The variable etb_driver references
the function __init etb_probe()
If the reference is valid then annotate the
variable with __init* or __refdata (see linux/init.h) or name the variable:
*_template, *_timer, *_sht, *_ops, *_probe, *_probe_one, *_console,
WARNING: arch/arm/kernel/built-in.o(.data+0x2cc): Section mismatch in reference from the variable etm_driver to the function .init.text:etm_probe()
The variable etm_driver references
the function __init etm_probe()
If the reference is valid then annotate the
variable with __init* or __refdata (see linux/init.h) or name the variable:
*_template, *_timer, *_sht, *_ops, *_probe, *_probe_one, *_console,
Signed-off-by: Ming Lei <tom.leiming@gmail.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Make Primecell driver probe functions take a const pointer to their
ID tables. Drivers should never modify their ID tables in their
probe handler.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
* 'llseek' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/bkl:
vfs: make no_llseek the default
vfs: don't use BKL in default_llseek
llseek: automatically add .llseek fop
libfs: use generic_file_llseek for simple_attr
mac80211: disallow seeks in minstrel debug code
lirc: make chardev nonseekable
viotape: use noop_llseek
raw: use explicit llseek file operations
ibmasmfs: use generic_file_llseek
spufs: use llseek in all file operations
arm/omap: use generic_file_llseek in iommu_debug
lkdtm: use generic_file_llseek in debugfs
net/wireless: use generic_file_llseek in debugfs
drm: use noop_llseek
All file_operations should get a .llseek operation so we can make
nonseekable_open the default for future file operations without a
.llseek pointer.
The three cases that we can automatically detect are no_llseek, seq_lseek
and default_llseek. For cases where we can we can automatically prove that
the file offset is always ignored, we use noop_llseek, which maintains
the current behavior of not returning an error from a seek.
New drivers should normally not use noop_llseek but instead use no_llseek
and call nonseekable_open at open time. Existing drivers can be converted
to do the same when the maintainer knows for certain that no user code
relies on calling seek on the device file.
The generated code is often incorrectly indented and right now contains
comments that clarify for each added line why a specific variant was
chosen. In the version that gets submitted upstream, the comments will
be gone and I will manually fix the indentation, because there does not
seem to be a way to do that using coccinelle.
Some amount of new code is currently sitting in linux-next that should get
the same modifications, which I will do at the end of the merge window.
Many thanks to Julia Lawall for helping me learn to write a semantic
patch that does all this.
===== begin semantic patch =====
// This adds an llseek= method to all file operations,
// as a preparation for making no_llseek the default.
//
// The rules are
// - use no_llseek explicitly if we do nonseekable_open
// - use seq_lseek for sequential files
// - use default_llseek if we know we access f_pos
// - use noop_llseek if we know we don't access f_pos,
// but we still want to allow users to call lseek
//
@ open1 exists @
identifier nested_open;
@@
nested_open(...)
{
<+...
nonseekable_open(...)
...+>
}
@ open exists@
identifier open_f;
identifier i, f;
identifier open1.nested_open;
@@
int open_f(struct inode *i, struct file *f)
{
<+...
(
nonseekable_open(...)
|
nested_open(...)
)
...+>
}
@ read disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ read_no_fpos disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
... when != off
}
@ write @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ write_no_fpos @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
... when != off
}
@ fops0 @
identifier fops;
@@
struct file_operations fops = {
...
};
@ has_llseek depends on fops0 @
identifier fops0.fops;
identifier llseek_f;
@@
struct file_operations fops = {
...
.llseek = llseek_f,
...
};
@ has_read depends on fops0 @
identifier fops0.fops;
identifier read_f;
@@
struct file_operations fops = {
...
.read = read_f,
...
};
@ has_write depends on fops0 @
identifier fops0.fops;
identifier write_f;
@@
struct file_operations fops = {
...
.write = write_f,
...
};
@ has_open depends on fops0 @
identifier fops0.fops;
identifier open_f;
@@
struct file_operations fops = {
...
.open = open_f,
...
};
// use no_llseek if we call nonseekable_open
////////////////////////////////////////////
@ nonseekable1 depends on !has_llseek && has_open @
identifier fops0.fops;
identifier nso ~= "nonseekable_open";
@@
struct file_operations fops = {
... .open = nso, ...
+.llseek = no_llseek, /* nonseekable */
};
@ nonseekable2 depends on !has_llseek @
identifier fops0.fops;
identifier open.open_f;
@@
struct file_operations fops = {
... .open = open_f, ...
+.llseek = no_llseek, /* open uses nonseekable */
};
// use seq_lseek for sequential files
/////////////////////////////////////
@ seq depends on !has_llseek @
identifier fops0.fops;
identifier sr ~= "seq_read";
@@
struct file_operations fops = {
... .read = sr, ...
+.llseek = seq_lseek, /* we have seq_read */
};
// use default_llseek if there is a readdir
///////////////////////////////////////////
@ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier readdir_e;
@@
// any other fop is used that changes pos
struct file_operations fops = {
... .readdir = readdir_e, ...
+.llseek = default_llseek, /* readdir is present */
};
// use default_llseek if at least one of read/write touches f_pos
/////////////////////////////////////////////////////////////////
@ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read.read_f;
@@
// read fops use offset
struct file_operations fops = {
... .read = read_f, ...
+.llseek = default_llseek, /* read accesses f_pos */
};
@ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write.write_f;
@@
// write fops use offset
struct file_operations fops = {
... .write = write_f, ...
+ .llseek = default_llseek, /* write accesses f_pos */
};
// Use noop_llseek if neither read nor write accesses f_pos
///////////////////////////////////////////////////////////
@ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
identifier write_no_fpos.write_f;
@@
// write fops use offset
struct file_operations fops = {
...
.write = write_f,
.read = read_f,
...
+.llseek = noop_llseek, /* read and write both use no f_pos */
};
@ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write_no_fpos.write_f;
@@
struct file_operations fops = {
... .write = write_f, ...
+.llseek = noop_llseek, /* write uses no f_pos */
};
@ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
@@
struct file_operations fops = {
... .read = read_f, ...
+.llseek = noop_llseek, /* read uses no f_pos */
};
@ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
@@
struct file_operations fops = {
...
+.llseek = noop_llseek, /* no read or write fn */
};
===== End semantic patch =====
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Julia Lawall <julia@diku.dk>
Cc: Christoph Hellwig <hch@infradead.org>
This driver implements support for on-chip Embedded Tracing Macrocell and
Embedded Trace Buffer. It allows to trigger tracing of kernel execution flow
and exporting trace output to userspace via character device and a sysrq
combo.
Trace output can then be decoded by a fairly simple open source tool [1]
which is already sufficient to get the idea of what the kernel is doing.
[1]: http://github.com/virtuoso/etm2human
Signed-off-by: Alexander Shishkin <virtuoso@slind.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>