/* Copyright (c) 2009-2012, Code Aurora Forum. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include #include #include #include #include #include #include #include #include #include #include #include #include "clock.h" #include "clock-local.h" #ifdef CONFIG_MSM_SECURE_IO #undef readl_relaxed #undef writel_relaxed #define readl_relaxed secure_readl #define writel_relaxed secure_writel #endif /* * When enabling/disabling a clock, check the halt bit up to this number * number of times (with a 1 us delay in between) before continuing. */ #define HALT_CHECK_MAX_LOOPS 200 /* For clock without halt checking, wait this long after enables/disables. */ #define HALT_CHECK_DELAY_US 10 DEFINE_SPINLOCK(local_clock_reg_lock); struct clk_freq_tbl rcg_dummy_freq = F_END; /* * Common Set-Rate Functions */ /* For clocks with MND dividers. */ void set_rate_mnd(struct rcg_clk *clk, struct clk_freq_tbl *nf) { uint32_t ns_reg_val, ctl_reg_val; /* Assert MND reset. */ ns_reg_val = readl_relaxed(clk->ns_reg); ns_reg_val |= BIT(7); writel_relaxed(ns_reg_val, clk->ns_reg); /* Program M and D values. */ writel_relaxed(nf->md_val, clk->md_reg); /* If the clock has a separate CC register, program it. */ if (clk->ns_reg != clk->b.ctl_reg) { ctl_reg_val = readl_relaxed(clk->b.ctl_reg); ctl_reg_val &= ~(clk->ctl_mask); ctl_reg_val |= nf->ctl_val; writel_relaxed(ctl_reg_val, clk->b.ctl_reg); } /* Deassert MND reset. */ ns_reg_val &= ~BIT(7); writel_relaxed(ns_reg_val, clk->ns_reg); } void set_rate_nop(struct rcg_clk *clk, struct clk_freq_tbl *nf) { /* * Nothing to do for fixed-rate or integer-divider clocks. Any settings * in NS registers are applied in the enable path, since power can be * saved by leaving an un-clocked or slowly-clocked source selected * until the clock is enabled. */ } void set_rate_mnd_8(struct rcg_clk *clk, struct clk_freq_tbl *nf) { uint32_t ctl_reg_val; /* Assert MND reset. */ ctl_reg_val = readl_relaxed(clk->b.ctl_reg); ctl_reg_val |= BIT(8); writel_relaxed(ctl_reg_val, clk->b.ctl_reg); /* Program M and D values. */ writel_relaxed(nf->md_val, clk->md_reg); /* Program MN counter Enable and Mode. */ ctl_reg_val &= ~(clk->ctl_mask); ctl_reg_val |= nf->ctl_val; writel_relaxed(ctl_reg_val, clk->b.ctl_reg); /* Deassert MND reset. */ ctl_reg_val &= ~BIT(8); writel_relaxed(ctl_reg_val, clk->b.ctl_reg); } void set_rate_mnd_banked(struct rcg_clk *clk, struct clk_freq_tbl *nf) { struct bank_masks *banks = clk->bank_info; const struct bank_mask_info *new_bank_masks; const struct bank_mask_info *old_bank_masks; uint32_t ns_reg_val, ctl_reg_val; uint32_t bank_sel; /* * Determine active bank and program the other one. If the clock is * off, program the active bank since bank switching won't work if * both banks aren't running. */ ctl_reg_val = readl_relaxed(clk->b.ctl_reg); bank_sel = !!(ctl_reg_val & banks->bank_sel_mask); /* If clock isn't running, don't switch banks. */ bank_sel ^= (!clk->enabled || clk->current_freq->freq_hz == 0); if (bank_sel == 0) { new_bank_masks = &banks->bank1_mask; old_bank_masks = &banks->bank0_mask; } else { new_bank_masks = &banks->bank0_mask; old_bank_masks = &banks->bank1_mask; } ns_reg_val = readl_relaxed(clk->ns_reg); /* Assert bank MND reset. */ ns_reg_val |= new_bank_masks->rst_mask; writel_relaxed(ns_reg_val, clk->ns_reg); /* * Program NS only if the clock is enabled, since the NS will be set * as part of the enable procedure and should remain with a low-power * MUX input selected until then. */ if (clk->enabled) { ns_reg_val &= ~(new_bank_masks->ns_mask); ns_reg_val |= (nf->ns_val & new_bank_masks->ns_mask); writel_relaxed(ns_reg_val, clk->ns_reg); } writel_relaxed(nf->md_val, new_bank_masks->md_reg); /* Enable counter only if clock is enabled. */ if (clk->enabled) ctl_reg_val |= new_bank_masks->mnd_en_mask; else ctl_reg_val &= ~(new_bank_masks->mnd_en_mask); ctl_reg_val &= ~(new_bank_masks->mode_mask); ctl_reg_val |= (nf->ctl_val & new_bank_masks->mode_mask); writel_relaxed(ctl_reg_val, clk->b.ctl_reg); /* Deassert bank MND reset. */ ns_reg_val &= ~(new_bank_masks->rst_mask); writel_relaxed(ns_reg_val, clk->ns_reg); /* * Switch to the new bank if clock is running. If it isn't, then * no switch is necessary since we programmed the active bank. */ if (clk->enabled && clk->current_freq->freq_hz) { ctl_reg_val ^= banks->bank_sel_mask; writel_relaxed(ctl_reg_val, clk->b.ctl_reg); /* * Wait at least 6 cycles of slowest bank's clock * for the glitch-free MUX to fully switch sources. */ mb(); udelay(1); /* Disable old bank's MN counter. */ ctl_reg_val &= ~(old_bank_masks->mnd_en_mask); writel_relaxed(ctl_reg_val, clk->b.ctl_reg); /* Program old bank to a low-power source and divider. */ ns_reg_val &= ~(old_bank_masks->ns_mask); ns_reg_val |= (clk->freq_tbl->ns_val & old_bank_masks->ns_mask); writel_relaxed(ns_reg_val, clk->ns_reg); } /* * If this freq requires the MN counter to be enabled, * update the enable mask to match the current bank. */ if (nf->mnd_en_mask) nf->mnd_en_mask = new_bank_masks->mnd_en_mask; /* Update the NS mask to match the current bank. */ clk->ns_mask = new_bank_masks->ns_mask; } void set_rate_div_banked(struct rcg_clk *clk, struct clk_freq_tbl *nf) { struct bank_masks *banks = clk->bank_info; const struct bank_mask_info *new_bank_masks; const struct bank_mask_info *old_bank_masks; uint32_t ns_reg_val, bank_sel; /* * Determine active bank and program the other one. If the clock is * off, program the active bank since bank switching won't work if * both banks aren't running. */ ns_reg_val = readl_relaxed(clk->ns_reg); bank_sel = !!(ns_reg_val & banks->bank_sel_mask); /* If clock isn't running, don't switch banks. */ bank_sel ^= (!clk->enabled || clk->current_freq->freq_hz == 0); if (bank_sel == 0) { new_bank_masks = &banks->bank1_mask; old_bank_masks = &banks->bank0_mask; } else { new_bank_masks = &banks->bank0_mask; old_bank_masks = &banks->bank1_mask; } /* * Program NS only if the clock is enabled, since the NS will be set * as part of the enable procedure and should remain with a low-power * MUX input selected until then. */ if (clk->enabled) { ns_reg_val &= ~(new_bank_masks->ns_mask); ns_reg_val |= (nf->ns_val & new_bank_masks->ns_mask); writel_relaxed(ns_reg_val, clk->ns_reg); } /* * Switch to the new bank if clock is running. If it isn't, then * no switch is necessary since we programmed the active bank. */ if (clk->enabled && clk->current_freq->freq_hz) { ns_reg_val ^= banks->bank_sel_mask; writel_relaxed(ns_reg_val, clk->ns_reg); /* * Wait at least 6 cycles of slowest bank's clock * for the glitch-free MUX to fully switch sources. */ mb(); udelay(1); /* Program old bank to a low-power source and divider. */ ns_reg_val &= ~(old_bank_masks->ns_mask); ns_reg_val |= (clk->freq_tbl->ns_val & old_bank_masks->ns_mask); writel_relaxed(ns_reg_val, clk->ns_reg); } /* Update the NS mask to match the current bank. */ clk->ns_mask = new_bank_masks->ns_mask; } /* * Clock enable/disable functions */ /* Return non-zero if a clock status registers shows the clock is halted. */ static int branch_clk_is_halted(const struct branch *clk) { int invert = (clk->halt_check == ENABLE); int status_bit = readl_relaxed(clk->halt_reg) & BIT(clk->halt_bit); return invert ? !status_bit : status_bit; } int branch_in_hwcg_mode(const struct branch *b) { if (!b->hwcg_mask) return 0; return !!(readl_relaxed(b->hwcg_reg) & b->hwcg_mask); } void __branch_clk_enable_reg(const struct branch *clk, const char *name) { u32 reg_val; if (clk->en_mask) { reg_val = readl_relaxed(clk->ctl_reg); reg_val |= clk->en_mask; writel_relaxed(reg_val, clk->ctl_reg); } /* * Use a memory barrier since some halt status registers are * not within the same 1K segment as the branch/root enable * registers. It's also needed in the udelay() case to ensure * the delay starts after the branch enable. */ mb(); /* Skip checking halt bit if the clock is in hardware gated mode */ if (branch_in_hwcg_mode(clk)) return; /* Wait for clock to enable before returning. */ if (clk->halt_check == DELAY) udelay(HALT_CHECK_DELAY_US); else if (clk->halt_check == ENABLE || clk->halt_check == HALT || clk->halt_check == ENABLE_VOTED || clk->halt_check == HALT_VOTED) { int count; /* Wait up to HALT_CHECK_MAX_LOOPS for clock to enable. */ for (count = HALT_CHECK_MAX_LOOPS; branch_clk_is_halted(clk) && count > 0; count--) udelay(1); WARN(count == 0, "%s status stuck at 'off'", name); } } /* Perform any register operations required to enable the clock. */ static void __rcg_clk_enable_reg(struct rcg_clk *clk) { u32 reg_val; void __iomem *const reg = clk->b.ctl_reg; WARN(clk->current_freq == &rcg_dummy_freq, "Attempting to enable %s before setting its rate. " "Set the rate first!\n", clk->c.dbg_name); /* * Program the NS register, if applicable. NS registers are not * set in the set_rate path because power can be saved by deferring * the selection of a clocked source until the clock is enabled. */ if (clk->ns_mask) { reg_val = readl_relaxed(clk->ns_reg); reg_val &= ~(clk->ns_mask); reg_val |= (clk->current_freq->ns_val & clk->ns_mask); writel_relaxed(reg_val, clk->ns_reg); } /* Enable MN counter, if applicable. */ reg_val = readl_relaxed(reg); if (clk->current_freq->mnd_en_mask) { reg_val |= clk->current_freq->mnd_en_mask; writel_relaxed(reg_val, reg); } /* Enable root. */ if (clk->root_en_mask) { reg_val |= clk->root_en_mask; writel_relaxed(reg_val, reg); } __branch_clk_enable_reg(&clk->b, clk->c.dbg_name); } /* Perform any register operations required to disable the branch. */ u32 __branch_clk_disable_reg(const struct branch *clk, const char *name) { u32 reg_val; reg_val = readl_relaxed(clk->ctl_reg); if (clk->en_mask) { reg_val &= ~(clk->en_mask); writel_relaxed(reg_val, clk->ctl_reg); } /* * Use a memory barrier since some halt status registers are * not within the same K segment as the branch/root enable * registers. It's also needed in the udelay() case to ensure * the delay starts after the branch disable. */ mb(); /* Skip checking halt bit if the clock is in hardware gated mode */ if (branch_in_hwcg_mode(clk)) return reg_val; /* Wait for clock to disable before continuing. */ if (clk->halt_check == DELAY || clk->halt_check == ENABLE_VOTED || clk->halt_check == HALT_VOTED) udelay(HALT_CHECK_DELAY_US); else if (clk->halt_check == ENABLE || clk->halt_check == HALT) { int count; /* Wait up to HALT_CHECK_MAX_LOOPS for clock to disable. */ for (count = HALT_CHECK_MAX_LOOPS; !branch_clk_is_halted(clk) && count > 0; count--) udelay(1); WARN(count == 0, "%s status stuck at 'on'", name); } return reg_val; } /* Perform any register operations required to disable the generator. */ static void __rcg_clk_disable_reg(struct rcg_clk *clk) { void __iomem *const reg = clk->b.ctl_reg; uint32_t reg_val; reg_val = __branch_clk_disable_reg(&clk->b, clk->c.dbg_name); /* Disable root. */ if (clk->root_en_mask) { reg_val &= ~(clk->root_en_mask); writel_relaxed(reg_val, reg); } /* Disable MN counter, if applicable. */ if (clk->current_freq->mnd_en_mask) { reg_val &= ~(clk->current_freq->mnd_en_mask); writel_relaxed(reg_val, reg); } /* * Program NS register to low-power value with an un-clocked or * slowly-clocked source selected. */ if (clk->ns_mask) { reg_val = readl_relaxed(clk->ns_reg); reg_val &= ~(clk->ns_mask); reg_val |= (clk->freq_tbl->ns_val & clk->ns_mask); writel_relaxed(reg_val, clk->ns_reg); } } /* Enable a rate-settable clock. */ int rcg_clk_enable(struct clk *c) { unsigned long flags; struct rcg_clk *clk = to_rcg_clk(c); spin_lock_irqsave(&local_clock_reg_lock, flags); __rcg_clk_enable_reg(clk); clk->enabled = true; spin_unlock_irqrestore(&local_clock_reg_lock, flags); return 0; } /* Disable a rate-settable clock. */ void rcg_clk_disable(struct clk *c) { unsigned long flags; struct rcg_clk *clk = to_rcg_clk(c); spin_lock_irqsave(&local_clock_reg_lock, flags); __rcg_clk_disable_reg(clk); clk->enabled = false; spin_unlock_irqrestore(&local_clock_reg_lock, flags); } /* * Frequency-related functions */ /* Set a clock to an exact rate. */ int rcg_clk_set_rate(struct clk *c, unsigned long rate) { struct rcg_clk *clk = to_rcg_clk(c); struct clk_freq_tbl *nf, *cf; struct clk *chld; int rc = 0; for (nf = clk->freq_tbl; nf->freq_hz != FREQ_END && nf->freq_hz != rate; nf++) ; if (nf->freq_hz == FREQ_END) return -EINVAL; /* Check if frequency is actually changed. */ cf = clk->current_freq; if (nf == cf) return 0; if (clk->enabled) { /* Enable source clock dependency for the new freq. */ rc = clk_enable(nf->src_clk); if (rc) return rc; } spin_lock(&local_clock_reg_lock); /* Disable branch if clock isn't dual-banked with a glitch-free MUX. */ if (!clk->bank_info) { /* Disable all branches to prevent glitches. */ list_for_each_entry(chld, &clk->c.children, siblings) { struct branch_clk *x = to_branch_clk(chld); /* * We don't need to grab the child's lock because * we hold the local_clock_reg_lock and 'enabled' is * only modified within lock. */ if (x->enabled) __branch_clk_disable_reg(&x->b, x->c.dbg_name); } if (clk->enabled) __rcg_clk_disable_reg(clk); } /* Perform clock-specific frequency switch operations. */ BUG_ON(!clk->set_rate); clk->set_rate(clk, nf); /* * Current freq must be updated before __rcg_clk_enable_reg() * is called to make sure the MNCNTR_EN bit is set correctly. */ clk->current_freq = nf; /* Enable any clocks that were disabled. */ if (!clk->bank_info) { if (clk->enabled) __rcg_clk_enable_reg(clk); /* Enable only branches that were ON before. */ list_for_each_entry(chld, &clk->c.children, siblings) { struct branch_clk *x = to_branch_clk(chld); if (x->enabled) __branch_clk_enable_reg(&x->b, x->c.dbg_name); } } spin_unlock(&local_clock_reg_lock); /* Release source requirements of the old freq. */ if (clk->enabled) clk_disable(cf->src_clk); return rc; } /* Get the currently-set rate of a clock in Hz. */ unsigned long rcg_clk_get_rate(struct clk *c) { struct rcg_clk *clk = to_rcg_clk(c); unsigned long flags; unsigned ret = 0; spin_lock_irqsave(&local_clock_reg_lock, flags); ret = clk->current_freq->freq_hz; spin_unlock_irqrestore(&local_clock_reg_lock, flags); /* * Return 0 if the rate has never been set. Might not be correct, * but it's good enough. */ if (ret == FREQ_END) ret = 0; return ret; } /* Check if a clock is currently enabled. */ int rcg_clk_is_enabled(struct clk *clk) { return to_rcg_clk(clk)->enabled; } /* Return a supported rate that's at least the specified rate. */ long rcg_clk_round_rate(struct clk *c, unsigned long rate) { struct rcg_clk *clk = to_rcg_clk(c); struct clk_freq_tbl *f; for (f = clk->freq_tbl; f->freq_hz != FREQ_END; f++) if (f->freq_hz >= rate) return f->freq_hz; return -EPERM; } bool local_clk_is_local(struct clk *clk) { return true; } /* Return the nth supported frequency for a given clock. */ int rcg_clk_list_rate(struct clk *c, unsigned n) { struct rcg_clk *clk = to_rcg_clk(c); if (!clk->freq_tbl || clk->freq_tbl->freq_hz == FREQ_END) return -ENXIO; return (clk->freq_tbl + n)->freq_hz; } struct clk *rcg_clk_get_parent(struct clk *clk) { return to_rcg_clk(clk)->current_freq->src_clk; } /* Disable hw clock gating if not set at boot */ static void branch_handoff(struct branch *clk, struct clk *c) { if (!branch_in_hwcg_mode(clk)) { clk->hwcg_mask = 0; c->flags &= ~CLKFLAG_HWCG; } else { c->flags |= CLKFLAG_HWCG; } } int branch_clk_handoff(struct clk *c) { struct branch_clk *clk = to_branch_clk(c); branch_handoff(&clk->b, &clk->c); return 0; } int rcg_clk_handoff(struct clk *c) { struct rcg_clk *clk = to_rcg_clk(c); uint32_t ctl_val, ns_val, md_val, ns_mask; struct clk_freq_tbl *freq; branch_handoff(&clk->b, &clk->c); ctl_val = readl_relaxed(clk->b.ctl_reg); if (!(ctl_val & clk->root_en_mask)) return 0; if (clk->bank_info) { const struct bank_masks *bank_masks = clk->bank_info; const struct bank_mask_info *bank_info; if (!(ctl_val & bank_masks->bank_sel_mask)) bank_info = &bank_masks->bank0_mask; else bank_info = &bank_masks->bank1_mask; ns_mask = bank_info->ns_mask; md_val = readl_relaxed(bank_info->md_reg); } else { ns_mask = clk->ns_mask; md_val = clk->md_reg ? readl_relaxed(clk->md_reg) : 0; } ns_val = readl_relaxed(clk->ns_reg) & ns_mask; for (freq = clk->freq_tbl; freq->freq_hz != FREQ_END; freq++) { if ((freq->ns_val & ns_mask) == ns_val && (!freq->mnd_en_mask || freq->md_val == md_val)) { pr_info("%s rate=%d\n", clk->c.dbg_name, freq->freq_hz); break; } } if (freq->freq_hz == FREQ_END) return 0; clk->current_freq = freq; return 1; } int pll_vote_clk_enable(struct clk *clk) { u32 ena; unsigned long flags; struct pll_vote_clk *pll = to_pll_vote_clk(clk); spin_lock_irqsave(&local_clock_reg_lock, flags); ena = readl_relaxed(pll->en_reg); ena |= pll->en_mask; writel_relaxed(ena, pll->en_reg); spin_unlock_irqrestore(&local_clock_reg_lock, flags); /* Wait until PLL is enabled */ while ((readl_relaxed(pll->status_reg) & BIT(16)) == 0) cpu_relax(); return 0; } void pll_vote_clk_disable(struct clk *clk) { u32 ena; unsigned long flags; struct pll_vote_clk *pll = to_pll_vote_clk(clk); spin_lock_irqsave(&local_clock_reg_lock, flags); ena = readl_relaxed(pll->en_reg); ena &= ~(pll->en_mask); writel_relaxed(ena, pll->en_reg); spin_unlock_irqrestore(&local_clock_reg_lock, flags); } unsigned long pll_vote_clk_get_rate(struct clk *clk) { struct pll_vote_clk *pll = to_pll_vote_clk(clk); return pll->rate; } struct clk *pll_vote_clk_get_parent(struct clk *clk) { struct pll_vote_clk *pll = to_pll_vote_clk(clk); return pll->parent; } int pll_vote_clk_is_enabled(struct clk *clk) { struct pll_vote_clk *pll = to_pll_vote_clk(clk); return !!(readl_relaxed(pll->status_reg) & BIT(16)); } struct clk_ops clk_ops_pll_vote = { .enable = pll_vote_clk_enable, .disable = pll_vote_clk_disable, .auto_off = pll_vote_clk_disable, .is_enabled = pll_vote_clk_is_enabled, .get_rate = pll_vote_clk_get_rate, .get_parent = pll_vote_clk_get_parent, .is_local = local_clk_is_local, }; static int pll_clk_enable(struct clk *clk) { u32 mode; unsigned long flags; struct pll_clk *pll = to_pll_clk(clk); spin_lock_irqsave(&local_clock_reg_lock, flags); mode = readl_relaxed(pll->mode_reg); /* Disable PLL bypass mode. */ mode |= BIT(1); writel_relaxed(mode, pll->mode_reg); /* * H/W requires a 5us delay between disabling the bypass and * de-asserting the reset. Delay 10us just to be safe. */ mb(); udelay(10); /* De-assert active-low PLL reset. */ mode |= BIT(2); writel_relaxed(mode, pll->mode_reg); /* Wait until PLL is locked. */ mb(); udelay(50); /* Enable PLL output. */ mode |= BIT(0); writel_relaxed(mode, pll->mode_reg); spin_unlock_irqrestore(&local_clock_reg_lock, flags); return 0; } static void pll_clk_disable(struct clk *clk) { u32 mode; unsigned long flags; struct pll_clk *pll = to_pll_clk(clk); /* * Disable the PLL output, disable test mode, enable * the bypass mode, and assert the reset. */ spin_lock_irqsave(&local_clock_reg_lock, flags); mode = readl_relaxed(pll->mode_reg); mode &= ~BM(3, 0); writel_relaxed(mode, pll->mode_reg); spin_unlock_irqrestore(&local_clock_reg_lock, flags); } static unsigned long pll_clk_get_rate(struct clk *clk) { struct pll_clk *pll = to_pll_clk(clk); return pll->rate; } static struct clk *pll_clk_get_parent(struct clk *clk) { struct pll_clk *pll = to_pll_clk(clk); return pll->parent; } int sr_pll_clk_enable(struct clk *clk) { u32 mode; unsigned long flags; struct pll_clk *pll = to_pll_clk(clk); spin_lock_irqsave(&local_clock_reg_lock, flags); mode = readl_relaxed(pll->mode_reg); /* De-assert active-low PLL reset. */ mode |= BIT(2); writel_relaxed(mode, pll->mode_reg); /* * H/W requires a 5us delay between disabling the bypass and * de-asserting the reset. Delay 10us just to be safe. */ mb(); udelay(10); /* Disable PLL bypass mode. */ mode |= BIT(1); writel_relaxed(mode, pll->mode_reg); /* Wait until PLL is locked. */ mb(); udelay(60); /* Enable PLL output. */ mode |= BIT(0); writel_relaxed(mode, pll->mode_reg); spin_unlock_irqrestore(&local_clock_reg_lock, flags); return 0; } struct clk_ops clk_ops_pll = { .enable = pll_clk_enable, .disable = pll_clk_disable, .auto_off = pll_clk_disable, .get_rate = pll_clk_get_rate, .get_parent = pll_clk_get_parent, .is_local = local_clk_is_local, }; struct clk_ops clk_ops_gnd = { .get_rate = fixed_clk_get_rate, .is_local = local_clk_is_local, }; struct fixed_clk gnd_clk = { .c = { .dbg_name = "ground_clk", .ops = &clk_ops_gnd, CLK_INIT(gnd_clk.c), }, }; struct clk_ops clk_ops_measure = { .is_local = local_clk_is_local, }; int branch_clk_enable(struct clk *clk) { unsigned long flags; struct branch_clk *branch = to_branch_clk(clk); spin_lock_irqsave(&local_clock_reg_lock, flags); __branch_clk_enable_reg(&branch->b, branch->c.dbg_name); branch->enabled = true; spin_unlock_irqrestore(&local_clock_reg_lock, flags); return 0; } void branch_clk_disable(struct clk *clk) { unsigned long flags; struct branch_clk *branch = to_branch_clk(clk); spin_lock_irqsave(&local_clock_reg_lock, flags); __branch_clk_disable_reg(&branch->b, branch->c.dbg_name); branch->enabled = false; spin_unlock_irqrestore(&local_clock_reg_lock, flags); } struct clk *branch_clk_get_parent(struct clk *clk) { struct branch_clk *branch = to_branch_clk(clk); return branch->parent; } int branch_clk_set_parent(struct clk *clk, struct clk *parent) { /* * We setup the parent pointer at init time in msm_clock_init(). * This check is to make sure drivers can't change the parent. */ if (parent && list_empty(&clk->siblings)) { list_add(&clk->siblings, &parent->children); return 0; } return -EINVAL; } int branch_clk_is_enabled(struct clk *clk) { struct branch_clk *branch = to_branch_clk(clk); return branch->enabled; } static void branch_enable_hwcg(struct branch *b) { unsigned long flags; u32 reg_val; spin_lock_irqsave(&local_clock_reg_lock, flags); reg_val = readl_relaxed(b->hwcg_reg); reg_val |= b->hwcg_mask; writel_relaxed(reg_val, b->hwcg_reg); spin_unlock_irqrestore(&local_clock_reg_lock, flags); } static void branch_disable_hwcg(struct branch *b) { unsigned long flags; u32 reg_val; spin_lock_irqsave(&local_clock_reg_lock, flags); reg_val = readl_relaxed(b->hwcg_reg); reg_val &= ~b->hwcg_mask; writel_relaxed(reg_val, b->hwcg_reg); spin_unlock_irqrestore(&local_clock_reg_lock, flags); } void branch_clk_enable_hwcg(struct clk *clk) { struct branch_clk *branch = to_branch_clk(clk); branch_enable_hwcg(&branch->b); } void branch_clk_disable_hwcg(struct clk *clk) { struct branch_clk *branch = to_branch_clk(clk); branch_disable_hwcg(&branch->b); } int branch_clk_in_hwcg_mode(struct clk *c) { struct branch_clk *clk = to_branch_clk(c); return branch_in_hwcg_mode(&clk->b); } void rcg_clk_enable_hwcg(struct clk *clk) { struct rcg_clk *rcg = to_rcg_clk(clk); branch_enable_hwcg(&rcg->b); } void rcg_clk_disable_hwcg(struct clk *clk) { struct rcg_clk *rcg = to_rcg_clk(clk); branch_disable_hwcg(&rcg->b); } int rcg_clk_in_hwcg_mode(struct clk *c) { struct rcg_clk *clk = to_rcg_clk(c); return branch_in_hwcg_mode(&clk->b); } int branch_reset(struct branch *b, enum clk_reset_action action) { int ret = 0; u32 reg_val; unsigned long flags; if (!b->reset_reg) return -EPERM; /* Disable hw gating when asserting a reset */ if (b->hwcg_mask && action == CLK_RESET_ASSERT) branch_disable_hwcg(b); spin_lock_irqsave(&local_clock_reg_lock, flags); /* Assert/Deassert reset */ reg_val = readl_relaxed(b->reset_reg); switch (action) { case CLK_RESET_ASSERT: reg_val |= b->reset_mask; break; case CLK_RESET_DEASSERT: reg_val &= ~b->reset_mask; break; default: ret = -EINVAL; } writel_relaxed(reg_val, b->reset_reg); spin_unlock_irqrestore(&local_clock_reg_lock, flags); /* Enable hw gating when deasserting a reset */ if (b->hwcg_mask && action == CLK_RESET_DEASSERT) branch_enable_hwcg(b); /* Make sure write is issued before returning. */ mb(); return ret; } int branch_clk_reset(struct clk *clk, enum clk_reset_action action) { return branch_reset(&to_branch_clk(clk)->b, action); } int rcg_clk_reset(struct clk *clk, enum clk_reset_action action) { return branch_reset(&to_rcg_clk(clk)->b, action); } static int cdiv_clk_enable(struct clk *c) { unsigned long flags; struct cdiv_clk *clk = to_cdiv_clk(c); spin_lock_irqsave(&local_clock_reg_lock, flags); __branch_clk_enable_reg(&clk->b, clk->c.dbg_name); spin_unlock_irqrestore(&local_clock_reg_lock, flags); return 0; } static void cdiv_clk_disable(struct clk *c) { unsigned long flags; struct cdiv_clk *clk = to_cdiv_clk(c); spin_lock_irqsave(&local_clock_reg_lock, flags); __branch_clk_disable_reg(&clk->b, clk->c.dbg_name); spin_unlock_irqrestore(&local_clock_reg_lock, flags); } static int cdiv_clk_set_rate(struct clk *c, unsigned long rate) { struct cdiv_clk *clk = to_cdiv_clk(c); u32 reg_val; if (rate > clk->max_div) return -EINVAL; /* Check if frequency is actually changed. */ if (rate == clk->cur_div) return 0; spin_lock(&local_clock_reg_lock); reg_val = readl_relaxed(clk->ns_reg); reg_val &= ~(clk->ext_mask | (clk->max_div - 1) << clk->div_offset); /* Non-zero rates mean set a divider, zero means use external input */ if (rate) reg_val |= (rate - 1) << clk->div_offset; else reg_val |= clk->ext_mask; writel_relaxed(reg_val, clk->ns_reg); spin_unlock(&local_clock_reg_lock); clk->cur_div = rate; return 0; } static unsigned long cdiv_clk_get_rate(struct clk *c) { struct cdiv_clk *clk = to_cdiv_clk(c); return clk->cur_div; } static long cdiv_clk_round_rate(struct clk *c, unsigned long rate) { struct cdiv_clk *clk = to_cdiv_clk(c); return rate > clk->max_div ? -EPERM : rate; } static int cdiv_clk_list_rate(struct clk *c, unsigned n) { struct cdiv_clk *clk = to_cdiv_clk(c); return n > clk->max_div ? -ENXIO : n; } static int cdiv_clk_handoff(struct clk *c) { struct cdiv_clk *clk = to_cdiv_clk(c); u32 reg_val; branch_handoff(&clk->b, &clk->c); reg_val = readl_relaxed(clk->ns_reg); if (reg_val & clk->ext_mask) { clk->cur_div = 0; } else { reg_val >>= clk->div_offset; clk->cur_div = (reg_val & (clk->max_div - 1)) + 1; } return 0; } static void cdiv_clk_enable_hwcg(struct clk *c) { struct cdiv_clk *clk = to_cdiv_clk(c); branch_enable_hwcg(&clk->b); } static void cdiv_clk_disable_hwcg(struct clk *c) { struct cdiv_clk *clk = to_cdiv_clk(c); branch_disable_hwcg(&clk->b); } static int cdiv_clk_in_hwcg_mode(struct clk *c) { struct cdiv_clk *clk = to_cdiv_clk(c); return branch_in_hwcg_mode(&clk->b); } struct clk_ops clk_ops_cdiv = { .enable = cdiv_clk_enable, .disable = cdiv_clk_disable, .in_hwcg_mode = cdiv_clk_in_hwcg_mode, .enable_hwcg = cdiv_clk_enable_hwcg, .disable_hwcg = cdiv_clk_disable_hwcg, .auto_off = cdiv_clk_disable, .handoff = cdiv_clk_handoff, .set_rate = cdiv_clk_set_rate, .get_rate = cdiv_clk_get_rate, .list_rate = cdiv_clk_list_rate, .round_rate = cdiv_clk_round_rate, .is_local = local_clk_is_local, };