/* linux/arch/arm/mach-msm/timer.c * * Copyright (C) 2007 Google, Inc. * Copyright (c) 2009-2011, Code Aurora Forum. All rights reserved. * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(CONFIG_MSM_SMD) #include "smd_private.h" #endif #include "timer.h" enum { MSM_TIMER_DEBUG_SYNC = 1U << 0, }; static int msm_timer_debug_mask; module_param_named(debug_mask, msm_timer_debug_mask, int, S_IRUGO | S_IWUSR | S_IWGRP); #if defined(CONFIG_ARCH_MSM7X30) || defined(CONFIG_ARCH_MSM8X60) || \ defined(CONFIG_ARCH_MSM8960) || defined(CONFIG_ARCH_FSM9XXX) || \ defined(CONFIG_ARCH_APQ8064) #define MSM_GPT_BASE (MSM_TMR_BASE + 0x4) #define MSM_DGT_BASE (MSM_TMR_BASE + 0x24) #else #define MSM_GPT_BASE MSM_TMR_BASE #define MSM_DGT_BASE (MSM_TMR_BASE + 0x10) #endif #ifdef CONFIG_MSM7X00A_USE_GP_TIMER #define DG_TIMER_RATING 100 #define MSM_GLOBAL_TIMER MSM_CLOCK_GPT #else #define DG_TIMER_RATING 300 #define MSM_GLOBAL_TIMER MSM_CLOCK_DGT #endif #if defined(CONFIG_ARCH_MSM_ARM11) || defined(CONFIG_ARCH_MSM_CORTEX_A5) #define MSM_DGT_SHIFT (5) #else #define MSM_DGT_SHIFT (0) #endif #define TIMER_MATCH_VAL 0x0000 #define TIMER_COUNT_VAL 0x0004 #define TIMER_ENABLE 0x0008 #define TIMER_CLEAR 0x000C #define DGT_CLK_CTL 0x0034 enum { DGT_CLK_CTL_DIV_1 = 0, DGT_CLK_CTL_DIV_2 = 1, DGT_CLK_CTL_DIV_3 = 2, DGT_CLK_CTL_DIV_4 = 3, }; #define TIMER_ENABLE_EN 1 #define TIMER_ENABLE_CLR_ON_MATCH_EN 2 #define LOCAL_TIMER 0 #define GLOBAL_TIMER 1 /* * MSM_TMR_GLOBAL is added to the regbase of a timer to force the memory access * to come from the CPU0 region. */ #ifdef MSM_TMR0_BASE #define MSM_TMR_GLOBAL (MSM_TMR0_BASE - MSM_TMR_BASE) #else #define MSM_TMR_GLOBAL 0 #endif #if defined(CONFIG_MSM_DIRECT_SCLK_ACCESS) #define MPM_SCLK_COUNT_VAL 0x0024 #endif #define NR_TIMERS ARRAY_SIZE(msm_clocks) #if defined(CONFIG_ARCH_QSD8X50) #define DGT_HZ 4800000 /* Uses TCXO/4 (19.2 MHz / 4) */ #elif defined(CONFIG_ARCH_MSM7X30) #define DGT_HZ 6144000 /* Uses LPXO/4 (24.576 MHz / 4) */ #elif defined(CONFIG_ARCH_MSM8X60) || defined(CONFIG_ARCH_MSM8960) || \ defined(CONFIG_ARCH_APQ8064) /* Uses PXO/4 (24.576 MHz / 4) on V1, (27 MHz / 4) on V2 */ #define DGT_HZ 6750000 #else #define DGT_HZ 19200000 /* Uses TCXO (19.2 MHz) */ #endif #define GPT_HZ 32768 #define SCLK_HZ 32768 #if defined(CONFIG_MSM_N_WAY_SMSM) /* Time Master State Bits */ #define MASTER_BITS_PER_CPU 1 #define MASTER_TIME_PENDING \ (0x01UL << (MASTER_BITS_PER_CPU * SMSM_APPS_STATE)) /* Time Slave State Bits */ #define SLAVE_TIME_REQUEST 0x0400 #define SLAVE_TIME_POLL 0x0800 #define SLAVE_TIME_INIT 0x1000 #endif #ifdef CONFIG_SMP static struct msm_clock *clockevent_to_clock(struct clock_event_device *evt); #endif static irqreturn_t msm_timer_interrupt(int irq, void *dev_id); static cycle_t msm_gpt_read(struct clocksource *cs); static cycle_t msm_dgt_read(struct clocksource *cs); static void msm_timer_set_mode(enum clock_event_mode mode, struct clock_event_device *evt); static int msm_timer_set_next_event(unsigned long cycles, struct clock_event_device *evt); enum { MSM_CLOCK_FLAGS_UNSTABLE_COUNT = 1U << 0, MSM_CLOCK_FLAGS_ODD_MATCH_WRITE = 1U << 1, MSM_CLOCK_FLAGS_DELAYED_WRITE_POST = 1U << 2, }; struct msm_clock { struct clock_event_device clockevent; struct clocksource clocksource; struct irqaction irq; void __iomem *regbase; uint32_t freq; uint32_t shift; uint32_t flags; uint32_t write_delay; uint32_t rollover_offset; uint32_t index; }; enum { MSM_CLOCK_GPT, MSM_CLOCK_DGT, }; struct msm_clock_percpu_data { uint32_t last_set; uint32_t sleep_offset; uint32_t alarm_vtime; uint32_t alarm; uint32_t non_sleep_offset; uint32_t in_sync; cycle_t stopped_tick; int stopped; uint32_t last_sync_gpt; u64 last_sync_jiffies; }; struct msm_timer_sync_data_t { struct msm_clock *clock; uint32_t timeout; int exit_sleep; }; static struct msm_clock msm_clocks[] = { [MSM_CLOCK_GPT] = { .clockevent = { .name = "gp_timer", .features = CLOCK_EVT_FEAT_ONESHOT, .shift = 32, .rating = 200, .set_next_event = msm_timer_set_next_event, .set_mode = msm_timer_set_mode, }, .clocksource = { .name = "gp_timer", .rating = 200, .read = msm_gpt_read, .mask = CLOCKSOURCE_MASK(32), .shift = 17, .flags = CLOCK_SOURCE_IS_CONTINUOUS, }, .irq = { .name = "gp_timer", .flags = IRQF_DISABLED | IRQF_TIMER | IRQF_TRIGGER_RISING, .handler = msm_timer_interrupt, .dev_id = &msm_clocks[0].clockevent, .irq = INT_GP_TIMER_EXP }, .regbase = MSM_GPT_BASE, .freq = GPT_HZ, .index = MSM_CLOCK_GPT, .flags = #if defined(CONFIG_ARCH_MSM_ARM11) || defined(CONFIG_ARCH_MSM_CORTEX_A5) MSM_CLOCK_FLAGS_UNSTABLE_COUNT | MSM_CLOCK_FLAGS_ODD_MATCH_WRITE | MSM_CLOCK_FLAGS_DELAYED_WRITE_POST | #endif 0, .write_delay = 9, }, [MSM_CLOCK_DGT] = { .clockevent = { .name = "dg_timer", .features = CLOCK_EVT_FEAT_ONESHOT, .shift = 32 + MSM_DGT_SHIFT, .rating = DG_TIMER_RATING, .set_next_event = msm_timer_set_next_event, .set_mode = msm_timer_set_mode, }, .clocksource = { .name = "dg_timer", .rating = DG_TIMER_RATING, .read = msm_dgt_read, .mask = CLOCKSOURCE_MASK((32-MSM_DGT_SHIFT)), .shift = 24 - MSM_DGT_SHIFT, .flags = CLOCK_SOURCE_IS_CONTINUOUS, }, .irq = { .name = "dg_timer", .flags = IRQF_DISABLED | IRQF_TIMER | IRQF_TRIGGER_RISING, .handler = msm_timer_interrupt, .dev_id = &msm_clocks[1].clockevent, .irq = INT_DEBUG_TIMER_EXP }, .regbase = MSM_DGT_BASE, .freq = DGT_HZ >> MSM_DGT_SHIFT, .index = MSM_CLOCK_DGT, .shift = MSM_DGT_SHIFT, .write_delay = 9, } }; static DEFINE_PER_CPU(struct clock_event_device*, local_clock_event); static DEFINE_PER_CPU(struct msm_clock_percpu_data[NR_TIMERS], msm_clocks_percpu); static DEFINE_PER_CPU(struct msm_clock *, msm_active_clock); static irqreturn_t msm_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; if (smp_processor_id() != 0) evt = __get_cpu_var(local_clock_event); if (evt->event_handler == NULL) return IRQ_HANDLED; evt->event_handler(evt); return IRQ_HANDLED; } static uint32_t msm_read_timer_count(struct msm_clock *clock, int global) { uint32_t t1, t2; int loop_count = 0; if (global) t1 = __raw_readl(clock->regbase + TIMER_COUNT_VAL + MSM_TMR_GLOBAL); else t1 = __raw_readl(clock->regbase + TIMER_COUNT_VAL); if (!(clock->flags & MSM_CLOCK_FLAGS_UNSTABLE_COUNT)) return t1; while (1) { if (global) t2 = __raw_readl(clock->regbase + TIMER_COUNT_VAL + MSM_TMR_GLOBAL); else t2 = __raw_readl(clock->regbase + TIMER_COUNT_VAL); if (t1 == t2) return t1; if (loop_count++ > 10) { printk(KERN_ERR "msm_read_timer_count timer %s did not" "stabilize %u != %u\n", clock->clockevent.name, t2, t1); return t2; } t1 = t2; } } static cycle_t msm_gpt_read(struct clocksource *cs) { struct msm_clock *clock = &msm_clocks[MSM_CLOCK_GPT]; struct msm_clock_percpu_data *clock_state = &per_cpu(msm_clocks_percpu, 0)[MSM_CLOCK_GPT]; if (clock_state->stopped) return clock_state->stopped_tick; return msm_read_timer_count(clock, GLOBAL_TIMER) + clock_state->sleep_offset; } static cycle_t msm_dgt_read(struct clocksource *cs) { struct msm_clock *clock = &msm_clocks[MSM_CLOCK_DGT]; struct msm_clock_percpu_data *clock_state = &per_cpu(msm_clocks_percpu, 0)[MSM_CLOCK_DGT]; if (clock_state->stopped) return clock_state->stopped_tick >> MSM_DGT_SHIFT; return (msm_read_timer_count(clock, GLOBAL_TIMER) + clock_state->sleep_offset) >> MSM_DGT_SHIFT; } #ifdef CONFIG_SMP static struct msm_clock *clockevent_to_clock(struct clock_event_device *evt) { int i; for (i = 0; i < NR_TIMERS; i++) if (evt == &(msm_clocks[i].clockevent)) return &msm_clocks[i]; return &msm_clocks[MSM_GLOBAL_TIMER]; } #endif static int msm_timer_set_next_event(unsigned long cycles, struct clock_event_device *evt) { int i; struct msm_clock *clock; struct msm_clock_percpu_data *clock_state; uint32_t now; uint32_t alarm; int late; #ifdef CONFIG_SMP clock = clockevent_to_clock(evt); #else clock = container_of(evt, struct msm_clock, clockevent); #endif clock_state = &__get_cpu_var(msm_clocks_percpu)[clock->index]; if (clock_state->stopped) return 0; now = msm_read_timer_count(clock, LOCAL_TIMER); alarm = now + (cycles << clock->shift); if (clock->flags & MSM_CLOCK_FLAGS_ODD_MATCH_WRITE) while (now == clock_state->last_set) now = msm_read_timer_count(clock, LOCAL_TIMER); clock_state->alarm = alarm; __raw_writel(alarm, clock->regbase + TIMER_MATCH_VAL); if (clock->flags & MSM_CLOCK_FLAGS_DELAYED_WRITE_POST) { /* read the counter four extra times to make sure write posts before reading the time */ for (i = 0; i < 4; i++) __raw_readl(clock->regbase + TIMER_COUNT_VAL); } now = msm_read_timer_count(clock, LOCAL_TIMER); clock_state->last_set = now; clock_state->alarm_vtime = alarm + clock_state->sleep_offset; late = now - alarm; if (late >= (int)(-clock->write_delay << clock->shift) && late < clock->freq*5) return -ETIME; return 0; } static void msm_timer_set_mode(enum clock_event_mode mode, struct clock_event_device *evt) { struct msm_clock *clock; struct msm_clock_percpu_data *clock_state, *gpt_state; unsigned long irq_flags; #ifdef CONFIG_SMP clock = clockevent_to_clock(evt); #else clock = container_of(evt, struct msm_clock, clockevent); #endif clock_state = &__get_cpu_var(msm_clocks_percpu)[clock->index]; gpt_state = &__get_cpu_var(msm_clocks_percpu)[MSM_CLOCK_GPT]; local_irq_save(irq_flags); switch (mode) { case CLOCK_EVT_MODE_RESUME: case CLOCK_EVT_MODE_PERIODIC: break; case CLOCK_EVT_MODE_ONESHOT: clock_state->stopped = 0; clock_state->sleep_offset = -msm_read_timer_count(clock, LOCAL_TIMER) + clock_state->stopped_tick; get_cpu_var(msm_active_clock) = clock; put_cpu_var(msm_active_clock); __raw_writel(TIMER_ENABLE_EN, clock->regbase + TIMER_ENABLE); if (irq_get_chip(clock->irq.irq) && irq_get_chip(clock->irq.irq)->irq_unmask) { irq_get_chip(clock->irq.irq)->irq_unmask( irq_get_irq_data(clock->irq.irq)); } if (clock != &msm_clocks[MSM_CLOCK_GPT]) __raw_writel(TIMER_ENABLE_EN, msm_clocks[MSM_CLOCK_GPT].regbase + TIMER_ENABLE); break; case CLOCK_EVT_MODE_UNUSED: case CLOCK_EVT_MODE_SHUTDOWN: get_cpu_var(msm_active_clock) = NULL; put_cpu_var(msm_active_clock); clock_state->in_sync = 0; clock_state->stopped = 1; clock_state->stopped_tick = msm_read_timer_count(clock, LOCAL_TIMER) + clock_state->sleep_offset; __raw_writel(0, clock->regbase + TIMER_MATCH_VAL); if (irq_get_chip(clock->irq.irq) && irq_get_chip(clock->irq.irq)->irq_mask) { irq_get_chip(clock->irq.irq)->irq_mask( irq_get_irq_data(clock->irq.irq)); } #ifdef CONFIG_MSM_SMP if (clock != &msm_clocks[MSM_CLOCK_DGT] || smp_processor_id()) #endif __raw_writel(0, clock->regbase + TIMER_ENABLE); if (clock != &msm_clocks[MSM_CLOCK_GPT]) { gpt_state->in_sync = 0; __raw_writel(0, msm_clocks[MSM_CLOCK_GPT].regbase + TIMER_ENABLE); } break; } wmb(); local_irq_restore(irq_flags); } #ifdef CONFIG_PM /* * Retrieve the cycle count from sclk and optionally synchronize local clock * with the sclk value. * * time_start and time_expired are callbacks that must be specified. The * protocol uses them to detect timeout. The update callback is optional. * If not NULL, update will be called so that it can update local clock. * * The function does not use the argument data directly; it passes data to * the callbacks. * * Return value: * 0: the operation failed * >0: the slow clock value after time-sync */ static void (*msm_timer_sync_timeout)(void); #if defined(CONFIG_MSM_DIRECT_SCLK_ACCESS) static uint32_t msm_timer_do_sync_to_sclk( void (*time_start)(struct msm_timer_sync_data_t *data), bool (*time_expired)(struct msm_timer_sync_data_t *data), void (*update)(struct msm_timer_sync_data_t *, uint32_t, uint32_t), struct msm_timer_sync_data_t *data) { uint32_t t1, t2; int loop_count = 10; int loop_zero_count = 3; int tmp = USEC_PER_SEC/SCLK_HZ/(loop_zero_count-1); while (loop_zero_count--) { t1 = __raw_readl(MSM_RPM_MPM_BASE + MPM_SCLK_COUNT_VAL); do { udelay(1); t2 = t1; t1 = __raw_readl(MSM_RPM_MPM_BASE + MPM_SCLK_COUNT_VAL); } while ((t2 != t1) && --loop_count); if (!loop_count) { printk(KERN_EMERG "SCLK did not stabilize\n"); return 0; } if (t1) break; udelay(tmp); } if (!loop_zero_count) { printk(KERN_EMERG "SCLK reads zero\n"); return 0; } if (update != NULL) update(data, t1, SCLK_HZ); return t1; } #elif defined(CONFIG_MSM_N_WAY_SMSM) static uint32_t msm_timer_do_sync_to_sclk( void (*time_start)(struct msm_timer_sync_data_t *data), bool (*time_expired)(struct msm_timer_sync_data_t *data), void (*update)(struct msm_timer_sync_data_t *, uint32_t, uint32_t), struct msm_timer_sync_data_t *data) { uint32_t *smem_clock; uint32_t smem_clock_val; uint32_t state; smem_clock = smem_alloc(SMEM_SMEM_SLOW_CLOCK_VALUE, sizeof(uint32_t)); if (smem_clock == NULL) { printk(KERN_ERR "no smem clock\n"); return 0; } state = smsm_get_state(SMSM_MODEM_STATE); if ((state & SMSM_INIT) == 0) { printk(KERN_ERR "smsm not initialized\n"); return 0; } time_start(data); while ((state = smsm_get_state(SMSM_TIME_MASTER_DEM)) & MASTER_TIME_PENDING) { if (time_expired(data)) { printk(KERN_EMERG "get_smem_clock: timeout 1 still " "invalid state %x\n", state); msm_timer_sync_timeout(); } } smsm_change_state(SMSM_APPS_DEM, SLAVE_TIME_POLL | SLAVE_TIME_INIT, SLAVE_TIME_REQUEST); time_start(data); while (!((state = smsm_get_state(SMSM_TIME_MASTER_DEM)) & MASTER_TIME_PENDING)) { if (time_expired(data)) { printk(KERN_EMERG "get_smem_clock: timeout 2 still " "invalid state %x\n", state); msm_timer_sync_timeout(); } } smsm_change_state(SMSM_APPS_DEM, SLAVE_TIME_REQUEST, SLAVE_TIME_POLL); time_start(data); do { smem_clock_val = *smem_clock; } while (smem_clock_val == 0 && !time_expired(data)); state = smsm_get_state(SMSM_TIME_MASTER_DEM); if (smem_clock_val) { if (update != NULL) update(data, smem_clock_val, SCLK_HZ); if (msm_timer_debug_mask & MSM_TIMER_DEBUG_SYNC) printk(KERN_INFO "get_smem_clock: state %x clock %u\n", state, smem_clock_val); } else { printk(KERN_EMERG "get_smem_clock: timeout state %x clock %u\n", state, smem_clock_val); msm_timer_sync_timeout(); } smsm_change_state(SMSM_APPS_DEM, SLAVE_TIME_REQUEST | SLAVE_TIME_POLL, SLAVE_TIME_INIT); return smem_clock_val; } #else /* CONFIG_MSM_N_WAY_SMSM */ static uint32_t msm_timer_do_sync_to_sclk( void (*time_start)(struct msm_timer_sync_data_t *data), bool (*time_expired)(struct msm_timer_sync_data_t *data), void (*update)(struct msm_timer_sync_data_t *, uint32_t, uint32_t), struct msm_timer_sync_data_t *data) { uint32_t *smem_clock; uint32_t smem_clock_val; uint32_t last_state; uint32_t state; smem_clock = smem_alloc(SMEM_SMEM_SLOW_CLOCK_VALUE, sizeof(uint32_t)); if (smem_clock == NULL) { printk(KERN_ERR "no smem clock\n"); return 0; } last_state = state = smsm_get_state(SMSM_MODEM_STATE); smem_clock_val = *smem_clock; if (smem_clock_val) { printk(KERN_INFO "get_smem_clock: invalid start state %x " "clock %u\n", state, smem_clock_val); smsm_change_state(SMSM_APPS_STATE, SMSM_TIMEWAIT, SMSM_TIMEINIT); time_start(data); while (*smem_clock != 0 && !time_expired(data)) ; smem_clock_val = *smem_clock; if (smem_clock_val) { printk(KERN_EMERG "get_smem_clock: timeout still " "invalid state %x clock %u\n", state, smem_clock_val); msm_timer_sync_timeout(); } } time_start(data); smsm_change_state(SMSM_APPS_STATE, SMSM_TIMEINIT, SMSM_TIMEWAIT); do { smem_clock_val = *smem_clock; state = smsm_get_state(SMSM_MODEM_STATE); if (state != last_state) { last_state = state; if (msm_timer_debug_mask & MSM_TIMER_DEBUG_SYNC) printk(KERN_INFO "get_smem_clock: state %x clock %u\n", state, smem_clock_val); } } while (smem_clock_val == 0 && !time_expired(data)); if (smem_clock_val) { if (update != NULL) update(data, smem_clock_val, SCLK_HZ); } else { printk(KERN_EMERG "get_smem_clock: timeout state %x clock %u\n", state, smem_clock_val); msm_timer_sync_timeout(); } smsm_change_state(SMSM_APPS_STATE, SMSM_TIMEWAIT, SMSM_TIMEINIT); return smem_clock_val; } #endif /* CONFIG_MSM_N_WAY_SMSM */ /* * Callback function that initializes the timeout value. */ static void msm_timer_sync_to_sclk_time_start( struct msm_timer_sync_data_t *data) { /* approx 2 seconds */ uint32_t delta = data->clock->freq << data->clock->shift << 1; data->timeout = msm_read_timer_count(data->clock, LOCAL_TIMER) + delta; } /* * Callback function that checks the timeout. */ static bool msm_timer_sync_to_sclk_time_expired( struct msm_timer_sync_data_t *data) { uint32_t delta = msm_read_timer_count(data->clock, LOCAL_TIMER) - data->timeout; return ((int32_t) delta) > 0; } /* * Callback function that updates local clock from the specified source clock * value and frequency. */ static void msm_timer_sync_update(struct msm_timer_sync_data_t *data, uint32_t src_clk_val, uint32_t src_clk_freq) { struct msm_clock *dst_clk = data->clock; struct msm_clock_percpu_data *dst_clk_state = &__get_cpu_var(msm_clocks_percpu)[dst_clk->index]; uint32_t dst_clk_val = msm_read_timer_count(dst_clk, LOCAL_TIMER); uint32_t new_offset; if ((dst_clk->freq << dst_clk->shift) == src_clk_freq) { new_offset = src_clk_val - dst_clk_val; } else { uint64_t temp; /* separate multiplication and division steps to reduce rounding error */ temp = src_clk_val; temp *= dst_clk->freq << dst_clk->shift; do_div(temp, src_clk_freq); new_offset = (uint32_t)(temp) - dst_clk_val; } if (dst_clk_state->sleep_offset + dst_clk_state->non_sleep_offset != new_offset) { if (data->exit_sleep) dst_clk_state->sleep_offset = new_offset - dst_clk_state->non_sleep_offset; else dst_clk_state->non_sleep_offset = new_offset - dst_clk_state->sleep_offset; if (msm_timer_debug_mask & MSM_TIMER_DEBUG_SYNC) printk(KERN_INFO "sync clock %s: " "src %u, new offset %u + %u\n", dst_clk->clocksource.name, src_clk_val, dst_clk_state->sleep_offset, dst_clk_state->non_sleep_offset); } } /* * Synchronize GPT clock with sclk. */ static void msm_timer_sync_gpt_to_sclk(int exit_sleep) { struct msm_clock *gpt_clk = &msm_clocks[MSM_CLOCK_GPT]; struct msm_clock_percpu_data *gpt_clk_state = &__get_cpu_var(msm_clocks_percpu)[MSM_CLOCK_GPT]; struct msm_timer_sync_data_t data; uint32_t ret; if (gpt_clk_state->in_sync) return; data.clock = gpt_clk; data.timeout = 0; data.exit_sleep = exit_sleep; ret = msm_timer_do_sync_to_sclk( msm_timer_sync_to_sclk_time_start, msm_timer_sync_to_sclk_time_expired, msm_timer_sync_update, &data); if (ret) gpt_clk_state->in_sync = 1; } /* * Synchronize clock with GPT clock. */ static void msm_timer_sync_to_gpt(struct msm_clock *clock, int exit_sleep) { struct msm_clock *gpt_clk = &msm_clocks[MSM_CLOCK_GPT]; struct msm_clock_percpu_data *gpt_clk_state = &__get_cpu_var(msm_clocks_percpu)[MSM_CLOCK_GPT]; struct msm_clock_percpu_data *clock_state = &__get_cpu_var(msm_clocks_percpu)[clock->index]; struct msm_timer_sync_data_t data; uint32_t gpt_clk_val; u64 gpt_period = (1ULL << 32) * HZ / GPT_HZ; u64 now = get_jiffies_64(); BUG_ON(clock == gpt_clk); if (clock_state->in_sync && (now - clock_state->last_sync_jiffies < (gpt_period >> 1))) return; gpt_clk_val = msm_read_timer_count(gpt_clk, LOCAL_TIMER) + gpt_clk_state->sleep_offset + gpt_clk_state->non_sleep_offset; if (exit_sleep && gpt_clk_val < clock_state->last_sync_gpt) clock_state->non_sleep_offset -= clock->rollover_offset; data.clock = clock; data.timeout = 0; data.exit_sleep = exit_sleep; msm_timer_sync_update(&data, gpt_clk_val, GPT_HZ); clock_state->in_sync = 1; clock_state->last_sync_gpt = gpt_clk_val; clock_state->last_sync_jiffies = now; } static void msm_timer_reactivate_alarm(struct msm_clock *clock) { struct msm_clock_percpu_data *clock_state = &__get_cpu_var(msm_clocks_percpu)[clock->index]; long alarm_delta = clock_state->alarm_vtime - clock_state->sleep_offset - msm_read_timer_count(clock, LOCAL_TIMER); alarm_delta >>= clock->shift; if (alarm_delta < (long)clock->write_delay + 4) alarm_delta = clock->write_delay + 4; while (msm_timer_set_next_event(alarm_delta, &clock->clockevent)) ; } int64_t msm_timer_enter_idle(void) { struct msm_clock *gpt_clk = &msm_clocks[MSM_CLOCK_GPT]; struct msm_clock *clock = __get_cpu_var(msm_active_clock); struct msm_clock_percpu_data *clock_state = &__get_cpu_var(msm_clocks_percpu)[clock->index]; uint32_t alarm; uint32_t count; int32_t delta; BUG_ON(clock != &msm_clocks[MSM_CLOCK_GPT] && clock != &msm_clocks[MSM_CLOCK_DGT]); msm_timer_sync_gpt_to_sclk(0); if (clock != gpt_clk) msm_timer_sync_to_gpt(clock, 0); count = msm_read_timer_count(clock, LOCAL_TIMER); if (clock_state->stopped++ == 0) clock_state->stopped_tick = count + clock_state->sleep_offset; alarm = clock_state->alarm; delta = alarm - count; if (delta <= -(int32_t)((clock->freq << clock->shift) >> 10)) { /* timer should have triggered 1ms ago */ printk(KERN_ERR "msm_timer_enter_idle: timer late %d, " "reprogram it\n", delta); msm_timer_reactivate_alarm(clock); } if (delta <= 0) return 0; return clocksource_cyc2ns((alarm - count) >> clock->shift, clock->clocksource.mult, clock->clocksource.shift); } void msm_timer_exit_idle(int low_power) { struct msm_clock *gpt_clk = &msm_clocks[MSM_CLOCK_GPT]; struct msm_clock *clock = __get_cpu_var(msm_active_clock); struct msm_clock_percpu_data *gpt_clk_state = &__get_cpu_var(msm_clocks_percpu)[MSM_CLOCK_GPT]; struct msm_clock_percpu_data *clock_state = &__get_cpu_var(msm_clocks_percpu)[clock->index]; uint32_t enabled; BUG_ON(clock != &msm_clocks[MSM_CLOCK_GPT] && clock != &msm_clocks[MSM_CLOCK_DGT]); if (!low_power) goto exit_idle_exit; enabled = __raw_readl(gpt_clk->regbase + TIMER_ENABLE) & TIMER_ENABLE_EN; if (!enabled) __raw_writel(TIMER_ENABLE_EN, gpt_clk->regbase + TIMER_ENABLE); #if defined(CONFIG_ARCH_MSM_SCORPION) || defined(CONFIG_ARCH_MSM_KRAIT) gpt_clk_state->in_sync = 0; #else gpt_clk_state->in_sync = gpt_clk_state->in_sync && enabled; #endif /* Make sure timer is actually enabled before we sync it */ wmb(); msm_timer_sync_gpt_to_sclk(1); if (clock == gpt_clk) goto exit_idle_alarm; enabled = __raw_readl(clock->regbase + TIMER_ENABLE) & TIMER_ENABLE_EN; if (!enabled) __raw_writel(TIMER_ENABLE_EN, clock->regbase + TIMER_ENABLE); #if defined(CONFIG_ARCH_MSM_SCORPION) || defined(CONFIG_ARCH_MSM_KRAIT) clock_state->in_sync = 0; #else clock_state->in_sync = clock_state->in_sync && enabled; #endif /* Make sure timer is actually enabled before we sync it */ wmb(); msm_timer_sync_to_gpt(clock, 1); exit_idle_alarm: msm_timer_reactivate_alarm(clock); exit_idle_exit: clock_state->stopped--; } /* * Callback function that initializes the timeout value. */ static void msm_timer_get_sclk_time_start( struct msm_timer_sync_data_t *data) { data->timeout = 200000; } /* * Callback function that checks the timeout. */ static bool msm_timer_get_sclk_time_expired( struct msm_timer_sync_data_t *data) { udelay(10); return --data->timeout <= 0; } /* * Retrieve the cycle count from the sclk and convert it into * nanoseconds. * * On exit, if period is not NULL, it contains the period of the * sclk in nanoseconds, i.e. how long the cycle count wraps around. * * Return value: * 0: the operation failed; period is not set either * >0: time in nanoseconds */ int64_t msm_timer_get_sclk_time(int64_t *period) { struct msm_timer_sync_data_t data; uint32_t clock_value; int64_t tmp; memset(&data, 0, sizeof(data)); clock_value = msm_timer_do_sync_to_sclk( msm_timer_get_sclk_time_start, msm_timer_get_sclk_time_expired, NULL, &data); if (!clock_value) return 0; if (period) { tmp = 1LL << 32; tmp = tmp * NSEC_PER_SEC / SCLK_HZ; *period = tmp; } tmp = (int64_t)clock_value; tmp = tmp * NSEC_PER_SEC / SCLK_HZ; return tmp; } int __init msm_timer_init_time_sync(void (*timeout)(void)) { #if defined(CONFIG_MSM_N_WAY_SMSM) && !defined(CONFIG_MSM_DIRECT_SCLK_ACCESS) int ret = smsm_change_intr_mask(SMSM_TIME_MASTER_DEM, 0xFFFFFFFF, 0); if (ret) { printk(KERN_ERR "%s: failed to clear interrupt mask, %d\n", __func__, ret); return ret; } smsm_change_state(SMSM_APPS_DEM, SLAVE_TIME_REQUEST | SLAVE_TIME_POLL, SLAVE_TIME_INIT); #endif BUG_ON(timeout == NULL); msm_timer_sync_timeout = timeout; return 0; } #endif unsigned long long sched_clock(void) { static cycle_t last_ticks; static unsigned long long last_ns; static DEFINE_SPINLOCK(msm_timer_sched_clock_lock); struct msm_clock *clock; struct clocksource *cs; cycle_t ticks, delta; unsigned long irq_flags; clock = &msm_clocks[MSM_GLOBAL_TIMER]; cs = &clock->clocksource; ticks = cs->read(cs); spin_lock_irqsave(&msm_timer_sched_clock_lock, irq_flags); delta = (ticks - last_ticks) & cs->mask; if (delta < cs->mask/2) { last_ticks += delta; last_ns += clocksource_cyc2ns(delta, cs->mult, cs->shift); } ticks = last_ticks; spin_unlock_irqrestore(&msm_timer_sched_clock_lock, irq_flags); return last_ns; } #ifdef CONFIG_MSM_SMP int read_current_timer(unsigned long *timer_val) { struct msm_clock *dgt = &msm_clocks[MSM_CLOCK_DGT]; *timer_val = msm_read_timer_count(dgt, GLOBAL_TIMER); return 0; } #endif static void __init msm_timer_init(void) { int i; int res; #if defined(CONFIG_ARCH_MSM8X60) || defined(CONFIG_ARCH_MSM8960) || \ defined(CONFIG_ARCH_APQ8064) __raw_writel(DGT_CLK_CTL_DIV_4, MSM_TMR_BASE + DGT_CLK_CTL); #endif for (i = 0; i < ARRAY_SIZE(msm_clocks); i++) { struct msm_clock *clock = &msm_clocks[i]; struct clock_event_device *ce = &clock->clockevent; struct clocksource *cs = &clock->clocksource; __raw_writel(0, clock->regbase + TIMER_ENABLE); __raw_writel(1, clock->regbase + TIMER_CLEAR); __raw_writel(0, clock->regbase + TIMER_COUNT_VAL); __raw_writel(~0, clock->regbase + TIMER_MATCH_VAL); if ((clock->freq << clock->shift) == GPT_HZ) { clock->rollover_offset = 0; } else { uint64_t temp; temp = clock->freq << clock->shift; temp <<= 32; temp /= GPT_HZ; clock->rollover_offset = (uint32_t) temp; } ce->mult = div_sc(clock->freq, NSEC_PER_SEC, ce->shift); /* allow at least 10 seconds to notice that the timer wrapped */ ce->max_delta_ns = clockevent_delta2ns(0xf0000000 >> clock->shift, ce); /* ticks gets rounded down by one */ ce->min_delta_ns = clockevent_delta2ns(clock->write_delay + 4, ce); ce->cpumask = cpumask_of(0); cs->mult = clocksource_hz2mult(clock->freq, cs->shift); res = clocksource_register(cs); if (res) printk(KERN_ERR "msm_timer_init: clocksource_register " "failed for %s\n", cs->name); res = setup_irq(clock->irq.irq, &clock->irq); if (res) printk(KERN_ERR "msm_timer_init: setup_irq " "failed for %s\n", cs->name); irq_get_chip(clock->irq.irq)->irq_mask(irq_get_irq_data( clock->irq.irq)); clockevents_register_device(ce); } #ifdef CONFIG_MSM_SMP __raw_writel(1, msm_clocks[MSM_CLOCK_DGT].regbase + TIMER_ENABLE); set_delay_fn(read_current_timer_delay_loop); #endif } #ifdef CONFIG_SMP int __cpuinit local_timer_setup(struct clock_event_device *evt) { unsigned long flags; static bool first_boot = true; struct msm_clock *clock = &msm_clocks[MSM_GLOBAL_TIMER]; /* Use existing clock_event for cpu 0 */ if (!smp_processor_id()) return 0; __raw_writel(DGT_CLK_CTL_DIV_4, MSM_TMR_BASE + DGT_CLK_CTL); if (first_boot) { __raw_writel(0, clock->regbase + TIMER_ENABLE); __raw_writel(0, clock->regbase + TIMER_CLEAR); __raw_writel(~0, clock->regbase + TIMER_MATCH_VAL); first_boot = false; } evt->irq = clock->irq.irq; evt->name = "local_timer"; evt->features = CLOCK_EVT_FEAT_ONESHOT; evt->rating = clock->clockevent.rating; evt->set_mode = msm_timer_set_mode; evt->set_next_event = msm_timer_set_next_event; evt->shift = clock->clockevent.shift; evt->mult = div_sc(clock->freq, NSEC_PER_SEC, evt->shift); evt->max_delta_ns = clockevent_delta2ns(0xf0000000 >> clock->shift, evt); evt->min_delta_ns = clockevent_delta2ns(4, evt); __get_cpu_var(local_clock_event) = evt; local_irq_save(flags); gic_clear_spi_pending(clock->irq.irq); local_irq_restore(flags); gic_enable_ppi(clock->irq.irq); clockevents_register_device(evt); return 0; } int local_timer_ack(void) { return 1; } #endif struct sys_timer msm_timer = { .init = msm_timer_init };