/* Copyright (c) 2011-2012, Code Aurora Forum. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "wcd9310.h" #define WCD9310_RATES (SNDRV_PCM_RATE_8000|SNDRV_PCM_RATE_16000|\ SNDRV_PCM_RATE_32000|SNDRV_PCM_RATE_48000) #define NUM_DECIMATORS 10 #define NUM_INTERPOLATORS 7 #define BITS_PER_REG 8 #define TABLA_RX_DAI_ID 1 #define TABLA_TX_DAI_ID 2 #define TABLA_CFILT_FAST_MODE 0x00 #define TABLA_CFILT_SLOW_MODE 0x40 #define MBHC_FW_READ_ATTEMPTS 15 #define MBHC_FW_READ_TIMEOUT 2000000 #define TABLA_JACK_MASK (SND_JACK_HEADSET | SND_JACK_OC_HPHL | SND_JACK_OC_HPHR) #define TABLA_I2S_MASTER_MODE_MASK 0x08 #define TABLA_OCP_ATTEMPT 1 #define TABLA_MCLK_RATE_12288KHZ 12288000 #define TABLA_MCLK_RATE_9600KHZ 9600000 #define TABLA_FAKE_INS_THRESHOLD_MS 2500 #define TABLA_FAKE_REMOVAL_MIN_PERIOD_MS 50 static const DECLARE_TLV_DB_SCALE(digital_gain, 0, 1, 0); static const DECLARE_TLV_DB_SCALE(line_gain, 0, 7, 1); static const DECLARE_TLV_DB_SCALE(analog_gain, 0, 25, 1); enum tabla_bandgap_type { TABLA_BANDGAP_OFF = 0, TABLA_BANDGAP_AUDIO_MODE, TABLA_BANDGAP_MBHC_MODE, }; struct mbhc_micbias_regs { u16 cfilt_val; u16 cfilt_ctl; u16 mbhc_reg; u16 int_rbias; u16 ctl_reg; u8 cfilt_sel; }; /* Codec supports 2 IIR filters */ enum { IIR1 = 0, IIR2, IIR_MAX, }; /* Codec supports 5 bands */ enum { BAND1 = 0, BAND2, BAND3, BAND4, BAND5, BAND_MAX, }; /* Flags to track of PA and DAC state. * PA and DAC should be tracked separately as AUXPGA loopback requires * only PA to be turned on without DAC being on. */ enum tabla_priv_ack_flags { TABLA_HPHL_PA_OFF_ACK = 0, TABLA_HPHR_PA_OFF_ACK, TABLA_HPHL_DAC_OFF_ACK, TABLA_HPHR_DAC_OFF_ACK }; /* Data used by MBHC */ struct mbhc_internal_cal_data { u16 dce_z; u16 dce_mb; u16 sta_z; u16 sta_mb; u32 t_sta_dce; u32 t_dce; u32 t_sta; u32 micb_mv; u16 v_ins_hu; u16 v_ins_h; u16 v_b1_hu; u16 v_b1_h; u16 v_b1_huc; u16 v_brh; u16 v_brl; u16 v_no_mic; u8 npoll; u8 nbounce_wait; }; struct tabla_reg_address { u16 micb_4_ctl; u16 micb_4_int_rbias; u16 micb_4_mbhc; }; struct tabla_priv { struct snd_soc_codec *codec; struct tabla_reg_address reg_addr; u32 mclk_freq; u32 adc_count; u32 cfilt1_cnt; u32 cfilt2_cnt; u32 cfilt3_cnt; u32 rx_bias_count; enum tabla_bandgap_type bandgap_type; bool mclk_enabled; bool clock_active; bool config_mode_active; bool mbhc_polling_active; unsigned long mbhc_fake_ins_start; int buttons_pressed; enum tabla_micbias_num micbias; /* void* calibration contains: * struct tabla_mbhc_general_cfg generic; * struct tabla_mbhc_plug_detect_cfg plug_det; * struct tabla_mbhc_plug_type_cfg plug_type; * struct tabla_mbhc_btn_detect_cfg btn_det; * struct tabla_mbhc_imped_detect_cfg imped_det; * Note: various size depends on btn_det->num_btn */ void *calibration; struct mbhc_internal_cal_data mbhc_data; struct snd_soc_jack *headset_jack; struct snd_soc_jack *button_jack; struct tabla_pdata *pdata; u32 anc_slot; bool no_mic_headset_override; /* Delayed work to report long button press */ struct delayed_work btn0_dwork; struct mbhc_micbias_regs mbhc_bias_regs; u8 cfilt_k_value; bool mbhc_micbias_switched; /* track PA/DAC state */ unsigned long hph_pa_dac_state; /*track tabla interface type*/ u8 intf_type; u32 hph_status; /* track headhpone status */ /* define separate work for left and right headphone OCP to avoid * additional checking on which OCP event to report so no locking * to ensure synchronization is required */ struct work_struct hphlocp_work; /* reporting left hph ocp off */ struct work_struct hphrocp_work; /* reporting right hph ocp off */ u8 hphlocp_cnt; /* headphone left ocp retry */ u8 hphrocp_cnt; /* headphone right ocp retry */ /* Callback function to enable MCLK */ int (*mclk_cb) (struct snd_soc_codec*, int); /* Work to perform MBHC Firmware Read */ struct delayed_work mbhc_firmware_dwork; const struct firmware *mbhc_fw; }; #ifdef CONFIG_DEBUG_FS struct tabla_priv *debug_tabla_priv; #endif static int tabla_codec_enable_charge_pump(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; pr_debug("%s %d\n", __func__, event); switch (event) { case SND_SOC_DAPM_POST_PMU: snd_soc_update_bits(codec, TABLA_A_CDC_CLK_OTHR_CTL, 0x01, 0x01); snd_soc_update_bits(codec, TABLA_A_CDC_CLSG_CTL, 0x08, 0x08); usleep_range(200, 200); snd_soc_update_bits(codec, TABLA_A_CP_STATIC, 0x10, 0x00); break; case SND_SOC_DAPM_PRE_PMD: snd_soc_update_bits(codec, TABLA_A_CDC_CLK_OTHR_RESET_CTL, 0x10, 0x10); usleep_range(20, 20); snd_soc_update_bits(codec, TABLA_A_CP_STATIC, 0x08, 0x08); snd_soc_update_bits(codec, TABLA_A_CP_STATIC, 0x10, 0x10); snd_soc_update_bits(codec, TABLA_A_CDC_CLSG_CTL, 0x08, 0x00); snd_soc_update_bits(codec, TABLA_A_CDC_CLK_OTHR_CTL, 0x01, 0x00); snd_soc_update_bits(codec, TABLA_A_CP_STATIC, 0x08, 0x00); break; } return 0; } static int tabla_get_anc_slot(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); ucontrol->value.integer.value[0] = tabla->anc_slot; return 0; } static int tabla_put_anc_slot(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); tabla->anc_slot = ucontrol->value.integer.value[0]; return 0; } static int tabla_pa_gain_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { u8 ear_pa_gain; struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); ear_pa_gain = snd_soc_read(codec, TABLA_A_RX_EAR_GAIN); ear_pa_gain = ear_pa_gain >> 5; if (ear_pa_gain == 0x00) { ucontrol->value.integer.value[0] = 0; } else if (ear_pa_gain == 0x04) { ucontrol->value.integer.value[0] = 1; } else { pr_err("%s: ERROR: Unsupported Ear Gain = 0x%x\n", __func__, ear_pa_gain); return -EINVAL; } pr_debug("%s: ear_pa_gain = 0x%x\n", __func__, ear_pa_gain); return 0; } static int tabla_pa_gain_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { u8 ear_pa_gain; struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); pr_debug("%s: ucontrol->value.integer.value[0] = %ld\n", __func__, ucontrol->value.integer.value[0]); switch (ucontrol->value.integer.value[0]) { case 0: ear_pa_gain = 0x00; break; case 1: ear_pa_gain = 0x80; break; default: return -EINVAL; } snd_soc_update_bits(codec, TABLA_A_RX_EAR_GAIN, 0xE0, ear_pa_gain); return 0; } static int tabla_get_iir_enable_audio_mixer( struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); int iir_idx = ((struct soc_multi_mixer_control *) kcontrol->private_value)->reg; int band_idx = ((struct soc_multi_mixer_control *) kcontrol->private_value)->shift; ucontrol->value.integer.value[0] = snd_soc_read(codec, (TABLA_A_CDC_IIR1_CTL + 16 * iir_idx)) & (1 << band_idx); pr_debug("%s: IIR #%d band #%d enable %d\n", __func__, iir_idx, band_idx, (uint32_t)ucontrol->value.integer.value[0]); return 0; } static int tabla_put_iir_enable_audio_mixer( struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); int iir_idx = ((struct soc_multi_mixer_control *) kcontrol->private_value)->reg; int band_idx = ((struct soc_multi_mixer_control *) kcontrol->private_value)->shift; int value = ucontrol->value.integer.value[0]; /* Mask first 5 bits, 6-8 are reserved */ snd_soc_update_bits(codec, (TABLA_A_CDC_IIR1_CTL + 16 * iir_idx), (1 << band_idx), (value << band_idx)); pr_debug("%s: IIR #%d band #%d enable %d\n", __func__, iir_idx, band_idx, value); return 0; } static uint32_t get_iir_band_coeff(struct snd_soc_codec *codec, int iir_idx, int band_idx, int coeff_idx) { /* Address does not automatically update if reading */ snd_soc_update_bits(codec, (TABLA_A_CDC_IIR1_COEF_B1_CTL + 16 * iir_idx), 0x1F, band_idx * BAND_MAX + coeff_idx); /* Mask bits top 2 bits since they are reserved */ return ((snd_soc_read(codec, (TABLA_A_CDC_IIR1_COEF_B2_CTL + 16 * iir_idx)) << 24) | (snd_soc_read(codec, (TABLA_A_CDC_IIR1_COEF_B3_CTL + 16 * iir_idx)) << 16) | (snd_soc_read(codec, (TABLA_A_CDC_IIR1_COEF_B4_CTL + 16 * iir_idx)) << 8) | (snd_soc_read(codec, (TABLA_A_CDC_IIR1_COEF_B5_CTL + 16 * iir_idx)))) & 0x3FFFFFFF; } static int tabla_get_iir_band_audio_mixer( struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); int iir_idx = ((struct soc_multi_mixer_control *) kcontrol->private_value)->reg; int band_idx = ((struct soc_multi_mixer_control *) kcontrol->private_value)->shift; ucontrol->value.integer.value[0] = get_iir_band_coeff(codec, iir_idx, band_idx, 0); ucontrol->value.integer.value[1] = get_iir_band_coeff(codec, iir_idx, band_idx, 1); ucontrol->value.integer.value[2] = get_iir_band_coeff(codec, iir_idx, band_idx, 2); ucontrol->value.integer.value[3] = get_iir_band_coeff(codec, iir_idx, band_idx, 3); ucontrol->value.integer.value[4] = get_iir_band_coeff(codec, iir_idx, band_idx, 4); pr_debug("%s: IIR #%d band #%d b0 = 0x%x\n" "%s: IIR #%d band #%d b1 = 0x%x\n" "%s: IIR #%d band #%d b2 = 0x%x\n" "%s: IIR #%d band #%d a1 = 0x%x\n" "%s: IIR #%d band #%d a2 = 0x%x\n", __func__, iir_idx, band_idx, (uint32_t)ucontrol->value.integer.value[0], __func__, iir_idx, band_idx, (uint32_t)ucontrol->value.integer.value[1], __func__, iir_idx, band_idx, (uint32_t)ucontrol->value.integer.value[2], __func__, iir_idx, band_idx, (uint32_t)ucontrol->value.integer.value[3], __func__, iir_idx, band_idx, (uint32_t)ucontrol->value.integer.value[4]); return 0; } static void set_iir_band_coeff(struct snd_soc_codec *codec, int iir_idx, int band_idx, int coeff_idx, uint32_t value) { /* Mask top 3 bits, 6-8 are reserved */ /* Update address manually each time */ snd_soc_update_bits(codec, (TABLA_A_CDC_IIR1_COEF_B1_CTL + 16 * iir_idx), 0x1F, band_idx * BAND_MAX + coeff_idx); /* Mask top 2 bits, 7-8 are reserved */ snd_soc_update_bits(codec, (TABLA_A_CDC_IIR1_COEF_B2_CTL + 16 * iir_idx), 0x3F, (value >> 24) & 0x3F); /* Isolate 8bits at a time */ snd_soc_update_bits(codec, (TABLA_A_CDC_IIR1_COEF_B3_CTL + 16 * iir_idx), 0xFF, (value >> 16) & 0xFF); snd_soc_update_bits(codec, (TABLA_A_CDC_IIR1_COEF_B4_CTL + 16 * iir_idx), 0xFF, (value >> 8) & 0xFF); snd_soc_update_bits(codec, (TABLA_A_CDC_IIR1_COEF_B5_CTL + 16 * iir_idx), 0xFF, value & 0xFF); } static int tabla_put_iir_band_audio_mixer( struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); int iir_idx = ((struct soc_multi_mixer_control *) kcontrol->private_value)->reg; int band_idx = ((struct soc_multi_mixer_control *) kcontrol->private_value)->shift; set_iir_band_coeff(codec, iir_idx, band_idx, 0, ucontrol->value.integer.value[0]); set_iir_band_coeff(codec, iir_idx, band_idx, 1, ucontrol->value.integer.value[1]); set_iir_band_coeff(codec, iir_idx, band_idx, 2, ucontrol->value.integer.value[2]); set_iir_band_coeff(codec, iir_idx, band_idx, 3, ucontrol->value.integer.value[3]); set_iir_band_coeff(codec, iir_idx, band_idx, 4, ucontrol->value.integer.value[4]); pr_debug("%s: IIR #%d band #%d b0 = 0x%x\n" "%s: IIR #%d band #%d b1 = 0x%x\n" "%s: IIR #%d band #%d b2 = 0x%x\n" "%s: IIR #%d band #%d a1 = 0x%x\n" "%s: IIR #%d band #%d a2 = 0x%x\n", __func__, iir_idx, band_idx, get_iir_band_coeff(codec, iir_idx, band_idx, 0), __func__, iir_idx, band_idx, get_iir_band_coeff(codec, iir_idx, band_idx, 1), __func__, iir_idx, band_idx, get_iir_band_coeff(codec, iir_idx, band_idx, 2), __func__, iir_idx, band_idx, get_iir_band_coeff(codec, iir_idx, band_idx, 3), __func__, iir_idx, band_idx, get_iir_band_coeff(codec, iir_idx, band_idx, 4)); return 0; } static const char *tabla_ear_pa_gain_text[] = {"POS_6_DB", "POS_2_DB"}; static const struct soc_enum tabla_ear_pa_gain_enum[] = { SOC_ENUM_SINGLE_EXT(2, tabla_ear_pa_gain_text), }; /*cut of frequency for high pass filter*/ static const char *cf_text[] = { "MIN_3DB_4Hz", "MIN_3DB_75Hz", "MIN_3DB_150Hz" }; static const struct soc_enum cf_dec1_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_TX1_MUX_CTL, 4, 3, cf_text); static const struct soc_enum cf_dec2_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_TX2_MUX_CTL, 4, 3, cf_text); static const struct soc_enum cf_dec3_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_TX3_MUX_CTL, 4, 3, cf_text); static const struct soc_enum cf_dec4_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_TX4_MUX_CTL, 4, 3, cf_text); static const struct soc_enum cf_dec5_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_TX5_MUX_CTL, 4, 3, cf_text); static const struct soc_enum cf_dec6_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_TX6_MUX_CTL, 4, 3, cf_text); static const struct soc_enum cf_dec7_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_TX7_MUX_CTL, 4, 3, cf_text); static const struct soc_enum cf_dec8_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_TX8_MUX_CTL, 4, 3, cf_text); static const struct soc_enum cf_dec9_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_TX9_MUX_CTL, 4, 3, cf_text); static const struct soc_enum cf_dec10_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_TX10_MUX_CTL, 4, 3, cf_text); static const struct soc_enum cf_rxmix1_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_RX1_B4_CTL, 1, 3, cf_text); static const struct soc_enum cf_rxmix2_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_RX2_B4_CTL, 1, 3, cf_text); static const struct soc_enum cf_rxmix3_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_RX3_B4_CTL, 1, 3, cf_text); static const struct soc_enum cf_rxmix4_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_RX4_B4_CTL, 1, 3, cf_text); static const struct soc_enum cf_rxmix5_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_RX5_B4_CTL, 1, 3, cf_text) ; static const struct soc_enum cf_rxmix6_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_RX6_B4_CTL, 1, 3, cf_text); static const struct soc_enum cf_rxmix7_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_RX7_B4_CTL, 1, 3, cf_text); static const struct snd_kcontrol_new tabla_snd_controls[] = { SOC_ENUM_EXT("EAR PA Gain", tabla_ear_pa_gain_enum[0], tabla_pa_gain_get, tabla_pa_gain_put), SOC_SINGLE_TLV("LINEOUT1 Volume", TABLA_A_RX_LINE_1_GAIN, 0, 12, 1, line_gain), SOC_SINGLE_TLV("LINEOUT2 Volume", TABLA_A_RX_LINE_2_GAIN, 0, 12, 1, line_gain), SOC_SINGLE_TLV("LINEOUT3 Volume", TABLA_A_RX_LINE_3_GAIN, 0, 12, 1, line_gain), SOC_SINGLE_TLV("LINEOUT4 Volume", TABLA_A_RX_LINE_4_GAIN, 0, 12, 1, line_gain), SOC_SINGLE_TLV("LINEOUT5 Volume", TABLA_A_RX_LINE_5_GAIN, 0, 12, 1, line_gain), SOC_SINGLE_TLV("HPHL Volume", TABLA_A_RX_HPH_L_GAIN, 0, 12, 1, line_gain), SOC_SINGLE_TLV("HPHR Volume", TABLA_A_RX_HPH_R_GAIN, 0, 12, 1, line_gain), SOC_SINGLE_S8_TLV("RX1 Digital Volume", TABLA_A_CDC_RX1_VOL_CTL_B2_CTL, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("RX2 Digital Volume", TABLA_A_CDC_RX2_VOL_CTL_B2_CTL, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("RX3 Digital Volume", TABLA_A_CDC_RX3_VOL_CTL_B2_CTL, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("RX4 Digital Volume", TABLA_A_CDC_RX4_VOL_CTL_B2_CTL, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("RX5 Digital Volume", TABLA_A_CDC_RX5_VOL_CTL_B2_CTL, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("RX6 Digital Volume", TABLA_A_CDC_RX6_VOL_CTL_B2_CTL, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("DEC1 Volume", TABLA_A_CDC_TX1_VOL_CTL_GAIN, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("DEC2 Volume", TABLA_A_CDC_TX2_VOL_CTL_GAIN, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("DEC3 Volume", TABLA_A_CDC_TX3_VOL_CTL_GAIN, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("DEC4 Volume", TABLA_A_CDC_TX4_VOL_CTL_GAIN, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("DEC5 Volume", TABLA_A_CDC_TX5_VOL_CTL_GAIN, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("DEC6 Volume", TABLA_A_CDC_TX6_VOL_CTL_GAIN, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("DEC7 Volume", TABLA_A_CDC_TX7_VOL_CTL_GAIN, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("DEC8 Volume", TABLA_A_CDC_TX8_VOL_CTL_GAIN, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("DEC9 Volume", TABLA_A_CDC_TX9_VOL_CTL_GAIN, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("DEC10 Volume", TABLA_A_CDC_TX10_VOL_CTL_GAIN, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("IIR1 INP1 Volume", TABLA_A_CDC_IIR1_GAIN_B1_CTL, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("IIR1 INP2 Volume", TABLA_A_CDC_IIR1_GAIN_B2_CTL, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("IIR1 INP3 Volume", TABLA_A_CDC_IIR1_GAIN_B3_CTL, -84, 40, digital_gain), SOC_SINGLE_S8_TLV("IIR1 INP4 Volume", TABLA_A_CDC_IIR1_GAIN_B4_CTL, -84, 40, digital_gain), SOC_SINGLE_TLV("ADC1 Volume", TABLA_A_TX_1_2_EN, 5, 3, 0, analog_gain), SOC_SINGLE_TLV("ADC2 Volume", TABLA_A_TX_1_2_EN, 1, 3, 0, analog_gain), SOC_SINGLE_TLV("ADC3 Volume", TABLA_A_TX_3_4_EN, 5, 3, 0, analog_gain), SOC_SINGLE_TLV("ADC4 Volume", TABLA_A_TX_3_4_EN, 1, 3, 0, analog_gain), SOC_SINGLE_TLV("ADC5 Volume", TABLA_A_TX_5_6_EN, 5, 3, 0, analog_gain), SOC_SINGLE_TLV("ADC6 Volume", TABLA_A_TX_5_6_EN, 1, 3, 0, analog_gain), SOC_SINGLE("MICBIAS1 CAPLESS Switch", TABLA_A_MICB_1_CTL, 4, 1, 1), SOC_SINGLE("MICBIAS2 CAPLESS Switch", TABLA_A_MICB_2_CTL, 4, 1, 1), SOC_SINGLE("MICBIAS3 CAPLESS Switch", TABLA_A_MICB_3_CTL, 4, 1, 1), SOC_SINGLE_EXT("ANC Slot", SND_SOC_NOPM, 0, 0, 100, tabla_get_anc_slot, tabla_put_anc_slot), SOC_ENUM("TX1 HPF cut off", cf_dec1_enum), SOC_ENUM("TX2 HPF cut off", cf_dec2_enum), SOC_ENUM("TX3 HPF cut off", cf_dec3_enum), SOC_ENUM("TX4 HPF cut off", cf_dec4_enum), SOC_ENUM("TX5 HPF cut off", cf_dec5_enum), SOC_ENUM("TX6 HPF cut off", cf_dec6_enum), SOC_ENUM("TX7 HPF cut off", cf_dec7_enum), SOC_ENUM("TX8 HPF cut off", cf_dec8_enum), SOC_ENUM("TX9 HPF cut off", cf_dec9_enum), SOC_ENUM("TX10 HPF cut off", cf_dec10_enum), SOC_SINGLE("TX1 HPF Switch", TABLA_A_CDC_TX1_MUX_CTL, 3, 1, 0), SOC_SINGLE("TX2 HPF Switch", TABLA_A_CDC_TX2_MUX_CTL, 3, 1, 0), SOC_SINGLE("TX3 HPF Switch", TABLA_A_CDC_TX3_MUX_CTL, 3, 1, 0), SOC_SINGLE("TX4 HPF Switch", TABLA_A_CDC_TX4_MUX_CTL, 3, 1, 0), SOC_SINGLE("TX5 HPF Switch", TABLA_A_CDC_TX5_MUX_CTL, 3, 1, 0), SOC_SINGLE("TX6 HPF Switch", TABLA_A_CDC_TX6_MUX_CTL, 3, 1, 0), SOC_SINGLE("TX7 HPF Switch", TABLA_A_CDC_TX7_MUX_CTL, 3, 1, 0), SOC_SINGLE("TX8 HPF Switch", TABLA_A_CDC_TX8_MUX_CTL, 3, 1, 0), SOC_SINGLE("TX9 HPF Switch", TABLA_A_CDC_TX9_MUX_CTL, 3, 1, 0), SOC_SINGLE("TX10 HPF Switch", TABLA_A_CDC_TX10_MUX_CTL, 3, 1, 0), SOC_SINGLE("RX1 HPF Switch", TABLA_A_CDC_RX1_B5_CTL, 2, 1, 0), SOC_SINGLE("RX2 HPF Switch", TABLA_A_CDC_RX2_B5_CTL, 2, 1, 0), SOC_SINGLE("RX3 HPF Switch", TABLA_A_CDC_RX3_B5_CTL, 2, 1, 0), SOC_SINGLE("RX4 HPF Switch", TABLA_A_CDC_RX4_B5_CTL, 2, 1, 0), SOC_SINGLE("RX5 HPF Switch", TABLA_A_CDC_RX5_B5_CTL, 2, 1, 0), SOC_SINGLE("RX6 HPF Switch", TABLA_A_CDC_RX6_B5_CTL, 2, 1, 0), SOC_SINGLE("RX7 HPF Switch", TABLA_A_CDC_RX7_B5_CTL, 2, 1, 0), SOC_ENUM("RX1 HPF cut off", cf_rxmix1_enum), SOC_ENUM("RX2 HPF cut off", cf_rxmix2_enum), SOC_ENUM("RX3 HPF cut off", cf_rxmix3_enum), SOC_ENUM("RX4 HPF cut off", cf_rxmix4_enum), SOC_ENUM("RX5 HPF cut off", cf_rxmix5_enum), SOC_ENUM("RX6 HPF cut off", cf_rxmix6_enum), SOC_ENUM("RX7 HPF cut off", cf_rxmix7_enum), SOC_SINGLE_EXT("IIR1 Enable Band1", IIR1, BAND1, 1, 0, tabla_get_iir_enable_audio_mixer, tabla_put_iir_enable_audio_mixer), SOC_SINGLE_EXT("IIR1 Enable Band2", IIR1, BAND2, 1, 0, tabla_get_iir_enable_audio_mixer, tabla_put_iir_enable_audio_mixer), SOC_SINGLE_EXT("IIR1 Enable Band3", IIR1, BAND3, 1, 0, tabla_get_iir_enable_audio_mixer, tabla_put_iir_enable_audio_mixer), SOC_SINGLE_EXT("IIR1 Enable Band4", IIR1, BAND4, 1, 0, tabla_get_iir_enable_audio_mixer, tabla_put_iir_enable_audio_mixer), SOC_SINGLE_EXT("IIR1 Enable Band5", IIR1, BAND5, 1, 0, tabla_get_iir_enable_audio_mixer, tabla_put_iir_enable_audio_mixer), SOC_SINGLE_EXT("IIR2 Enable Band1", IIR2, BAND1, 1, 0, tabla_get_iir_enable_audio_mixer, tabla_put_iir_enable_audio_mixer), SOC_SINGLE_EXT("IIR2 Enable Band2", IIR2, BAND2, 1, 0, tabla_get_iir_enable_audio_mixer, tabla_put_iir_enable_audio_mixer), SOC_SINGLE_EXT("IIR2 Enable Band3", IIR2, BAND3, 1, 0, tabla_get_iir_enable_audio_mixer, tabla_put_iir_enable_audio_mixer), SOC_SINGLE_EXT("IIR2 Enable Band4", IIR2, BAND4, 1, 0, tabla_get_iir_enable_audio_mixer, tabla_put_iir_enable_audio_mixer), SOC_SINGLE_EXT("IIR2 Enable Band5", IIR2, BAND5, 1, 0, tabla_get_iir_enable_audio_mixer, tabla_put_iir_enable_audio_mixer), SOC_SINGLE_MULTI_EXT("IIR1 Band1", IIR1, BAND1, 255, 0, 5, tabla_get_iir_band_audio_mixer, tabla_put_iir_band_audio_mixer), SOC_SINGLE_MULTI_EXT("IIR1 Band2", IIR1, BAND2, 255, 0, 5, tabla_get_iir_band_audio_mixer, tabla_put_iir_band_audio_mixer), SOC_SINGLE_MULTI_EXT("IIR1 Band3", IIR1, BAND3, 255, 0, 5, tabla_get_iir_band_audio_mixer, tabla_put_iir_band_audio_mixer), SOC_SINGLE_MULTI_EXT("IIR1 Band4", IIR1, BAND4, 255, 0, 5, tabla_get_iir_band_audio_mixer, tabla_put_iir_band_audio_mixer), SOC_SINGLE_MULTI_EXT("IIR1 Band5", IIR1, BAND5, 255, 0, 5, tabla_get_iir_band_audio_mixer, tabla_put_iir_band_audio_mixer), SOC_SINGLE_MULTI_EXT("IIR2 Band1", IIR2, BAND1, 255, 0, 5, tabla_get_iir_band_audio_mixer, tabla_put_iir_band_audio_mixer), SOC_SINGLE_MULTI_EXT("IIR2 Band2", IIR2, BAND2, 255, 0, 5, tabla_get_iir_band_audio_mixer, tabla_put_iir_band_audio_mixer), SOC_SINGLE_MULTI_EXT("IIR2 Band3", IIR2, BAND3, 255, 0, 5, tabla_get_iir_band_audio_mixer, tabla_put_iir_band_audio_mixer), SOC_SINGLE_MULTI_EXT("IIR2 Band4", IIR2, BAND4, 255, 0, 5, tabla_get_iir_band_audio_mixer, tabla_put_iir_band_audio_mixer), SOC_SINGLE_MULTI_EXT("IIR2 Band5", IIR2, BAND5, 255, 0, 5, tabla_get_iir_band_audio_mixer, tabla_put_iir_band_audio_mixer), }; static const struct snd_kcontrol_new tabla_1_x_snd_controls[] = { SOC_SINGLE("MICBIAS4 CAPLESS Switch", TABLA_1_A_MICB_4_CTL, 4, 1, 1), }; static const struct snd_kcontrol_new tabla_2_higher_snd_controls[] = { SOC_SINGLE("MICBIAS4 CAPLESS Switch", TABLA_2_A_MICB_4_CTL, 4, 1, 1), }; static const char *rx_mix1_text[] = { "ZERO", "SRC1", "SRC2", "IIR1", "IIR2", "RX1", "RX2", "RX3", "RX4", "RX5", "RX6", "RX7" }; static const char *rx_dsm_text[] = { "CIC_OUT", "DSM_INV" }; static const char *sb_tx1_mux_text[] = { "ZERO", "RMIX1", "RMIX2", "RMIX3", "RMIX4", "RMIX5", "RMIX6", "RMIX7", "DEC1" }; static const char *sb_tx5_mux_text[] = { "ZERO", "RMIX1", "RMIX2", "RMIX3", "RMIX4", "RMIX5", "RMIX6", "RMIX7", "DEC5" }; static const char *sb_tx6_mux_text[] = { "ZERO", "RMIX1", "RMIX2", "RMIX3", "RMIX4", "RMIX5", "RMIX6", "RMIX7", "DEC6" }; static const char const *sb_tx7_to_tx10_mux_text[] = { "ZERO", "RMIX1", "RMIX2", "RMIX3", "RMIX4", "RMIX5", "RMIX6", "RMIX7", "DEC1", "DEC2", "DEC3", "DEC4", "DEC5", "DEC6", "DEC7", "DEC8", "DEC9", "DEC10" }; static const char *dec1_mux_text[] = { "ZERO", "DMIC1", "ADC6", }; static const char *dec2_mux_text[] = { "ZERO", "DMIC2", "ADC5", }; static const char *dec3_mux_text[] = { "ZERO", "DMIC3", "ADC4", }; static const char *dec4_mux_text[] = { "ZERO", "DMIC4", "ADC3", }; static const char *dec5_mux_text[] = { "ZERO", "DMIC5", "ADC2", }; static const char *dec6_mux_text[] = { "ZERO", "DMIC6", "ADC1", }; static const char const *dec7_mux_text[] = { "ZERO", "DMIC1", "DMIC6", "ADC1", "ADC6", "ANC1_FB", "ANC2_FB", }; static const char *dec8_mux_text[] = { "ZERO", "DMIC2", "DMIC5", "ADC2", "ADC5", }; static const char *dec9_mux_text[] = { "ZERO", "DMIC4", "DMIC5", "ADC2", "ADC3", "ADCMB", "ANC1_FB", "ANC2_FB", }; static const char *dec10_mux_text[] = { "ZERO", "DMIC3", "DMIC6", "ADC1", "ADC4", "ADCMB", "ANC1_FB", "ANC2_FB", }; static const char const *anc_mux_text[] = { "ZERO", "ADC1", "ADC2", "ADC3", "ADC4", "ADC5", "ADC6", "ADC_MB", "RSVD_1", "DMIC1", "DMIC2", "DMIC3", "DMIC4", "DMIC5", "DMIC6" }; static const char const *anc1_fb_mux_text[] = { "ZERO", "EAR_HPH_L", "EAR_LINE_1", }; static const char *iir1_inp1_text[] = { "ZERO", "DEC1", "DEC2", "DEC3", "DEC4", "DEC5", "DEC6", "DEC7", "DEC8", "DEC9", "DEC10", "RX1", "RX2", "RX3", "RX4", "RX5", "RX6", "RX7" }; static const struct soc_enum rx_mix1_inp1_chain_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX1_B1_CTL, 0, 12, rx_mix1_text); static const struct soc_enum rx_mix1_inp2_chain_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX1_B1_CTL, 4, 12, rx_mix1_text); static const struct soc_enum rx2_mix1_inp1_chain_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX2_B1_CTL, 0, 12, rx_mix1_text); static const struct soc_enum rx2_mix1_inp2_chain_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX2_B1_CTL, 4, 12, rx_mix1_text); static const struct soc_enum rx3_mix1_inp1_chain_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX3_B1_CTL, 0, 12, rx_mix1_text); static const struct soc_enum rx3_mix1_inp2_chain_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX3_B1_CTL, 4, 12, rx_mix1_text); static const struct soc_enum rx4_mix1_inp1_chain_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX4_B1_CTL, 0, 12, rx_mix1_text); static const struct soc_enum rx4_mix1_inp2_chain_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX4_B1_CTL, 4, 12, rx_mix1_text); static const struct soc_enum rx5_mix1_inp1_chain_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX5_B1_CTL, 0, 12, rx_mix1_text); static const struct soc_enum rx5_mix1_inp2_chain_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX5_B1_CTL, 4, 12, rx_mix1_text); static const struct soc_enum rx6_mix1_inp1_chain_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX6_B1_CTL, 0, 12, rx_mix1_text); static const struct soc_enum rx6_mix1_inp2_chain_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX6_B1_CTL, 4, 12, rx_mix1_text); static const struct soc_enum rx7_mix1_inp1_chain_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX7_B1_CTL, 0, 12, rx_mix1_text); static const struct soc_enum rx7_mix1_inp2_chain_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_RX7_B1_CTL, 4, 12, rx_mix1_text); static const struct soc_enum rx4_dsm_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_RX4_B6_CTL, 4, 2, rx_dsm_text); static const struct soc_enum rx6_dsm_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_RX6_B6_CTL, 4, 2, rx_dsm_text); static const struct soc_enum sb_tx5_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_SB_B5_CTL, 0, 9, sb_tx5_mux_text); static const struct soc_enum sb_tx6_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_SB_B6_CTL, 0, 9, sb_tx6_mux_text); static const struct soc_enum sb_tx7_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_SB_B7_CTL, 0, 18, sb_tx7_to_tx10_mux_text); static const struct soc_enum sb_tx8_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_SB_B8_CTL, 0, 18, sb_tx7_to_tx10_mux_text); static const struct soc_enum sb_tx9_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_SB_B9_CTL, 0, 18, sb_tx7_to_tx10_mux_text); static const struct soc_enum sb_tx10_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_SB_B10_CTL, 0, 18, sb_tx7_to_tx10_mux_text); static const struct soc_enum sb_tx1_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_SB_B1_CTL, 0, 9, sb_tx1_mux_text); static const struct soc_enum dec1_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_B1_CTL, 0, 3, dec1_mux_text); static const struct soc_enum dec2_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_B1_CTL, 2, 3, dec2_mux_text); static const struct soc_enum dec3_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_B1_CTL, 4, 3, dec3_mux_text); static const struct soc_enum dec4_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_B1_CTL, 6, 3, dec4_mux_text); static const struct soc_enum dec5_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_B2_CTL, 0, 3, dec5_mux_text); static const struct soc_enum dec6_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_B2_CTL, 2, 3, dec6_mux_text); static const struct soc_enum dec7_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_B2_CTL, 4, 7, dec7_mux_text); static const struct soc_enum dec8_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_B3_CTL, 0, 7, dec8_mux_text); static const struct soc_enum dec9_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_B3_CTL, 3, 8, dec9_mux_text); static const struct soc_enum dec10_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_TX_B4_CTL, 0, 8, dec10_mux_text); static const struct soc_enum anc1_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_ANC_B1_CTL, 0, 16, anc_mux_text); static const struct soc_enum anc2_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_ANC_B1_CTL, 4, 16, anc_mux_text); static const struct soc_enum anc1_fb_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_ANC_B2_CTL, 0, 3, anc1_fb_mux_text); static const struct soc_enum iir1_inp1_mux_enum = SOC_ENUM_SINGLE(TABLA_A_CDC_CONN_EQ1_B1_CTL, 0, 18, iir1_inp1_text); static const struct snd_kcontrol_new rx_mix1_inp1_mux = SOC_DAPM_ENUM("RX1 MIX1 INP1 Mux", rx_mix1_inp1_chain_enum); static const struct snd_kcontrol_new rx_mix1_inp2_mux = SOC_DAPM_ENUM("RX1 MIX1 INP2 Mux", rx_mix1_inp2_chain_enum); static const struct snd_kcontrol_new rx2_mix1_inp1_mux = SOC_DAPM_ENUM("RX2 MIX1 INP1 Mux", rx2_mix1_inp1_chain_enum); static const struct snd_kcontrol_new rx2_mix1_inp2_mux = SOC_DAPM_ENUM("RX2 MIX1 INP2 Mux", rx2_mix1_inp2_chain_enum); static const struct snd_kcontrol_new rx3_mix1_inp1_mux = SOC_DAPM_ENUM("RX3 MIX1 INP1 Mux", rx3_mix1_inp1_chain_enum); static const struct snd_kcontrol_new rx3_mix1_inp2_mux = SOC_DAPM_ENUM("RX3 MIX1 INP2 Mux", rx3_mix1_inp2_chain_enum); static const struct snd_kcontrol_new rx4_mix1_inp1_mux = SOC_DAPM_ENUM("RX4 MIX1 INP1 Mux", rx4_mix1_inp1_chain_enum); static const struct snd_kcontrol_new rx4_mix1_inp2_mux = SOC_DAPM_ENUM("RX4 MIX1 INP2 Mux", rx4_mix1_inp2_chain_enum); static const struct snd_kcontrol_new rx5_mix1_inp1_mux = SOC_DAPM_ENUM("RX5 MIX1 INP1 Mux", rx5_mix1_inp1_chain_enum); static const struct snd_kcontrol_new rx5_mix1_inp2_mux = SOC_DAPM_ENUM("RX5 MIX1 INP2 Mux", rx5_mix1_inp2_chain_enum); static const struct snd_kcontrol_new rx6_mix1_inp1_mux = SOC_DAPM_ENUM("RX6 MIX1 INP1 Mux", rx6_mix1_inp1_chain_enum); static const struct snd_kcontrol_new rx6_mix1_inp2_mux = SOC_DAPM_ENUM("RX6 MIX1 INP2 Mux", rx6_mix1_inp2_chain_enum); static const struct snd_kcontrol_new rx7_mix1_inp1_mux = SOC_DAPM_ENUM("RX7 MIX1 INP1 Mux", rx7_mix1_inp1_chain_enum); static const struct snd_kcontrol_new rx7_mix1_inp2_mux = SOC_DAPM_ENUM("RX7 MIX1 INP2 Mux", rx7_mix1_inp2_chain_enum); static const struct snd_kcontrol_new rx4_dsm_mux = SOC_DAPM_ENUM("RX4 DSM MUX Mux", rx4_dsm_enum); static const struct snd_kcontrol_new rx6_dsm_mux = SOC_DAPM_ENUM("RX6 DSM MUX Mux", rx6_dsm_enum); static const struct snd_kcontrol_new sb_tx5_mux = SOC_DAPM_ENUM("SLIM TX5 MUX Mux", sb_tx5_mux_enum); static const struct snd_kcontrol_new sb_tx6_mux = SOC_DAPM_ENUM("SLIM TX6 MUX Mux", sb_tx6_mux_enum); static const struct snd_kcontrol_new sb_tx7_mux = SOC_DAPM_ENUM("SLIM TX7 MUX Mux", sb_tx7_mux_enum); static const struct snd_kcontrol_new sb_tx8_mux = SOC_DAPM_ENUM("SLIM TX8 MUX Mux", sb_tx8_mux_enum); static const struct snd_kcontrol_new sb_tx9_mux = SOC_DAPM_ENUM("SLIM TX9 MUX Mux", sb_tx9_mux_enum); static const struct snd_kcontrol_new sb_tx10_mux = SOC_DAPM_ENUM("SLIM TX10 MUX Mux", sb_tx10_mux_enum); static const struct snd_kcontrol_new sb_tx1_mux = SOC_DAPM_ENUM("SLIM TX1 MUX Mux", sb_tx1_mux_enum); static const struct snd_kcontrol_new dec1_mux = SOC_DAPM_ENUM("DEC1 MUX Mux", dec1_mux_enum); static const struct snd_kcontrol_new dec2_mux = SOC_DAPM_ENUM("DEC2 MUX Mux", dec2_mux_enum); static const struct snd_kcontrol_new dec3_mux = SOC_DAPM_ENUM("DEC3 MUX Mux", dec3_mux_enum); static const struct snd_kcontrol_new dec4_mux = SOC_DAPM_ENUM("DEC4 MUX Mux", dec4_mux_enum); static const struct snd_kcontrol_new dec5_mux = SOC_DAPM_ENUM("DEC5 MUX Mux", dec5_mux_enum); static const struct snd_kcontrol_new dec6_mux = SOC_DAPM_ENUM("DEC6 MUX Mux", dec6_mux_enum); static const struct snd_kcontrol_new dec7_mux = SOC_DAPM_ENUM("DEC7 MUX Mux", dec7_mux_enum); static const struct snd_kcontrol_new anc1_mux = SOC_DAPM_ENUM("ANC1 MUX Mux", anc1_mux_enum); static const struct snd_kcontrol_new dec8_mux = SOC_DAPM_ENUM("DEC8 MUX Mux", dec8_mux_enum); static const struct snd_kcontrol_new dec9_mux = SOC_DAPM_ENUM("DEC9 MUX Mux", dec9_mux_enum); static const struct snd_kcontrol_new dec10_mux = SOC_DAPM_ENUM("DEC10 MUX Mux", dec10_mux_enum); static const struct snd_kcontrol_new iir1_inp1_mux = SOC_DAPM_ENUM("IIR1 INP1 Mux", iir1_inp1_mux_enum); static const struct snd_kcontrol_new anc2_mux = SOC_DAPM_ENUM("ANC2 MUX Mux", anc2_mux_enum); static const struct snd_kcontrol_new anc1_fb_mux = SOC_DAPM_ENUM("ANC1 FB MUX Mux", anc1_fb_mux_enum); static const struct snd_kcontrol_new dac1_switch[] = { SOC_DAPM_SINGLE("Switch", TABLA_A_RX_EAR_EN, 5, 1, 0) }; static const struct snd_kcontrol_new hphl_switch[] = { SOC_DAPM_SINGLE("Switch", TABLA_A_RX_HPH_L_DAC_CTL, 6, 1, 0) }; static const struct snd_kcontrol_new lineout3_ground_switch = SOC_DAPM_SINGLE("Switch", TABLA_A_RX_LINE_3_DAC_CTL, 6, 1, 0); static const struct snd_kcontrol_new lineout4_ground_switch = SOC_DAPM_SINGLE("Switch", TABLA_A_RX_LINE_4_DAC_CTL, 6, 1, 0); static void tabla_codec_enable_adc_block(struct snd_soc_codec *codec, int enable) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); pr_debug("%s %d\n", __func__, enable); if (enable) { tabla->adc_count++; snd_soc_update_bits(codec, TABLA_A_TX_COM_BIAS, 0xE0, 0xE0); snd_soc_update_bits(codec, TABLA_A_CDC_CLK_OTHR_CTL, 0x2, 0x2); } else { tabla->adc_count--; if (!tabla->adc_count) { snd_soc_update_bits(codec, TABLA_A_CDC_CLK_OTHR_CTL, 0x2, 0x0); if (!tabla->mbhc_polling_active) snd_soc_update_bits(codec, TABLA_A_TX_COM_BIAS, 0xE0, 0x0); } } } static int tabla_codec_enable_adc(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; u16 adc_reg; u8 init_bit_shift; pr_debug("%s %d\n", __func__, event); if (w->reg == TABLA_A_TX_1_2_EN) adc_reg = TABLA_A_TX_1_2_TEST_CTL; else if (w->reg == TABLA_A_TX_3_4_EN) adc_reg = TABLA_A_TX_3_4_TEST_CTL; else if (w->reg == TABLA_A_TX_5_6_EN) adc_reg = TABLA_A_TX_5_6_TEST_CTL; else { pr_err("%s: Error, invalid adc register\n", __func__); return -EINVAL; } if (w->shift == 3) init_bit_shift = 6; else if (w->shift == 7) init_bit_shift = 7; else { pr_err("%s: Error, invalid init bit postion adc register\n", __func__); return -EINVAL; } switch (event) { case SND_SOC_DAPM_PRE_PMU: tabla_codec_enable_adc_block(codec, 1); snd_soc_update_bits(codec, adc_reg, 1 << init_bit_shift, 1 << init_bit_shift); break; case SND_SOC_DAPM_POST_PMU: snd_soc_update_bits(codec, adc_reg, 1 << init_bit_shift, 0x00); break; case SND_SOC_DAPM_POST_PMD: tabla_codec_enable_adc_block(codec, 0); break; } return 0; } static int tabla_codec_enable_lineout(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; u16 lineout_gain_reg; pr_debug("%s %d %s\n", __func__, event, w->name); switch (w->shift) { case 0: lineout_gain_reg = TABLA_A_RX_LINE_1_GAIN; break; case 1: lineout_gain_reg = TABLA_A_RX_LINE_2_GAIN; break; case 2: lineout_gain_reg = TABLA_A_RX_LINE_3_GAIN; break; case 3: lineout_gain_reg = TABLA_A_RX_LINE_4_GAIN; break; case 4: lineout_gain_reg = TABLA_A_RX_LINE_5_GAIN; break; default: pr_err("%s: Error, incorrect lineout register value\n", __func__); return -EINVAL; } switch (event) { case SND_SOC_DAPM_PRE_PMU: snd_soc_update_bits(codec, lineout_gain_reg, 0x40, 0x40); break; case SND_SOC_DAPM_POST_PMU: pr_debug("%s: sleeping 16 ms after %s PA turn on\n", __func__, w->name); usleep_range(16000, 16000); break; case SND_SOC_DAPM_POST_PMD: snd_soc_update_bits(codec, lineout_gain_reg, 0x40, 0x00); break; } return 0; } static int tabla_codec_enable_dmic(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; u16 tx_mux_ctl_reg, tx_dmic_ctl_reg; u8 dmic_clk_sel, dmic_clk_en; unsigned int dmic; int ret; ret = kstrtouint(strpbrk(w->name, "123456"), 10, &dmic); if (ret < 0) { pr_err("%s: Invalid DMIC line on the codec\n", __func__); return -EINVAL; } switch (dmic) { case 1: case 2: dmic_clk_sel = 0x02; dmic_clk_en = 0x01; break; case 3: case 4: dmic_clk_sel = 0x08; dmic_clk_en = 0x04; break; case 5: case 6: dmic_clk_sel = 0x20; dmic_clk_en = 0x10; break; default: pr_err("%s: Invalid DMIC Selection\n", __func__); return -EINVAL; } tx_mux_ctl_reg = TABLA_A_CDC_TX1_MUX_CTL + 8 * (dmic - 1); tx_dmic_ctl_reg = TABLA_A_CDC_TX1_DMIC_CTL + 8 * (dmic - 1); pr_debug("%s %d\n", __func__, event); switch (event) { case SND_SOC_DAPM_PRE_PMU: snd_soc_update_bits(codec, tx_mux_ctl_reg, 0x1, 0x1); snd_soc_update_bits(codec, TABLA_A_CDC_CLK_DMIC_CTL, dmic_clk_sel, dmic_clk_sel); snd_soc_update_bits(codec, tx_dmic_ctl_reg, 0x1, 0x1); snd_soc_update_bits(codec, TABLA_A_CDC_CLK_DMIC_CTL, dmic_clk_en, dmic_clk_en); break; case SND_SOC_DAPM_POST_PMD: snd_soc_update_bits(codec, TABLA_A_CDC_CLK_DMIC_CTL, dmic_clk_en, 0); break; } return 0; } static int tabla_codec_enable_anc(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; const char *filename; const struct firmware *fw; int i; int ret; int num_anc_slots; struct anc_header *anc_head; struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); u32 anc_writes_size = 0; int anc_size_remaining; u32 *anc_ptr; u16 reg; u8 mask, val, old_val; pr_debug("%s %d\n", __func__, event); switch (event) { case SND_SOC_DAPM_PRE_PMU: filename = "wcd9310/wcd9310_anc.bin"; ret = request_firmware(&fw, filename, codec->dev); if (ret != 0) { dev_err(codec->dev, "Failed to acquire ANC data: %d\n", ret); return -ENODEV; } if (fw->size < sizeof(struct anc_header)) { dev_err(codec->dev, "Not enough data\n"); release_firmware(fw); return -ENOMEM; } /* First number is the number of register writes */ anc_head = (struct anc_header *)(fw->data); anc_ptr = (u32 *)((u32)fw->data + sizeof(struct anc_header)); anc_size_remaining = fw->size - sizeof(struct anc_header); num_anc_slots = anc_head->num_anc_slots; if (tabla->anc_slot >= num_anc_slots) { dev_err(codec->dev, "Invalid ANC slot selected\n"); release_firmware(fw); return -EINVAL; } for (i = 0; i < num_anc_slots; i++) { if (anc_size_remaining < TABLA_PACKED_REG_SIZE) { dev_err(codec->dev, "Invalid register format\n"); release_firmware(fw); return -EINVAL; } anc_writes_size = (u32)(*anc_ptr); anc_size_remaining -= sizeof(u32); anc_ptr += 1; if (anc_writes_size * TABLA_PACKED_REG_SIZE > anc_size_remaining) { dev_err(codec->dev, "Invalid register format\n"); release_firmware(fw); return -ENOMEM; } if (tabla->anc_slot == i) break; anc_size_remaining -= (anc_writes_size * TABLA_PACKED_REG_SIZE); anc_ptr += anc_writes_size; } if (i == num_anc_slots) { dev_err(codec->dev, "Selected ANC slot not present\n"); release_firmware(fw); return -ENOMEM; } for (i = 0; i < anc_writes_size; i++) { TABLA_CODEC_UNPACK_ENTRY(anc_ptr[i], reg, mask, val); old_val = snd_soc_read(codec, reg); snd_soc_write(codec, reg, (old_val & ~mask) | (val & mask)); } release_firmware(fw); break; case SND_SOC_DAPM_POST_PMD: snd_soc_write(codec, TABLA_A_CDC_CLK_ANC_RESET_CTL, 0xFF); snd_soc_write(codec, TABLA_A_CDC_CLK_ANC_CLK_EN_CTL, 0); break; } return 0; } static void tabla_codec_disable_button_presses(struct snd_soc_codec *codec) { snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B4_CTL, 0x80); snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B3_CTL, 0x00); } static void tabla_codec_start_hs_polling(struct snd_soc_codec *codec) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); snd_soc_write(codec, TABLA_A_MBHC_SCALING_MUX_1, 0x84); tabla_enable_irq(codec->control_data, TABLA_IRQ_MBHC_REMOVAL); if (!tabla->no_mic_headset_override) { tabla_enable_irq(codec->control_data, TABLA_IRQ_MBHC_POTENTIAL); tabla_enable_irq(codec->control_data, TABLA_IRQ_MBHC_RELEASE); } else { tabla_codec_disable_button_presses(codec); } snd_soc_write(codec, TABLA_A_CDC_MBHC_EN_CTL, 0x1); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x8, 0x0); snd_soc_write(codec, TABLA_A_CDC_MBHC_EN_CTL, 0x1); } static void tabla_codec_pause_hs_polling(struct snd_soc_codec *codec) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x8, 0x8); tabla_disable_irq(codec->control_data, TABLA_IRQ_MBHC_REMOVAL); if (!tabla->no_mic_headset_override) { tabla_disable_irq(codec->control_data, TABLA_IRQ_MBHC_POTENTIAL); tabla_disable_irq(codec->control_data, TABLA_IRQ_MBHC_RELEASE); } } static void tabla_codec_switch_cfilt_mode(struct snd_soc_codec *codec, int mode) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); u8 reg_mode_val, cur_mode_val; bool mbhc_was_polling = false; if (mode) reg_mode_val = TABLA_CFILT_FAST_MODE; else reg_mode_val = TABLA_CFILT_SLOW_MODE; cur_mode_val = snd_soc_read(codec, tabla->mbhc_bias_regs.cfilt_ctl) & 0x40; if (cur_mode_val != reg_mode_val) { if (tabla->mbhc_polling_active) { tabla_codec_pause_hs_polling(codec); mbhc_was_polling = true; } snd_soc_update_bits(codec, tabla->mbhc_bias_regs.cfilt_ctl, 0x40, reg_mode_val); if (mbhc_was_polling) tabla_codec_start_hs_polling(codec); pr_debug("%s: CFILT mode change (%x to %x)\n", __func__, cur_mode_val, reg_mode_val); } else { pr_debug("%s: CFILT Value is already %x\n", __func__, cur_mode_val); } } static void tabla_codec_update_cfilt_usage(struct snd_soc_codec *codec, u8 cfilt_sel, int inc) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); u32 *cfilt_cnt_ptr = NULL; u16 micb_cfilt_reg; switch (cfilt_sel) { case TABLA_CFILT1_SEL: cfilt_cnt_ptr = &tabla->cfilt1_cnt; micb_cfilt_reg = TABLA_A_MICB_CFILT_1_CTL; break; case TABLA_CFILT2_SEL: cfilt_cnt_ptr = &tabla->cfilt2_cnt; micb_cfilt_reg = TABLA_A_MICB_CFILT_2_CTL; break; case TABLA_CFILT3_SEL: cfilt_cnt_ptr = &tabla->cfilt3_cnt; micb_cfilt_reg = TABLA_A_MICB_CFILT_3_CTL; break; default: return; /* should not happen */ } if (inc) { if (!(*cfilt_cnt_ptr)++) { /* Switch CFILT to slow mode if MBHC CFILT being used */ if (cfilt_sel == tabla->mbhc_bias_regs.cfilt_sel) tabla_codec_switch_cfilt_mode(codec, 0); snd_soc_update_bits(codec, micb_cfilt_reg, 0x80, 0x80); } } else { /* check if count not zero, decrement * then check if zero, go ahead disable cfilter */ if ((*cfilt_cnt_ptr) && !--(*cfilt_cnt_ptr)) { snd_soc_update_bits(codec, micb_cfilt_reg, 0x80, 0); /* Switch CFILT to fast mode if MBHC CFILT being used */ if (cfilt_sel == tabla->mbhc_bias_regs.cfilt_sel) tabla_codec_switch_cfilt_mode(codec, 1); } } } static int tabla_find_k_value(unsigned int ldoh_v, unsigned int cfilt_mv) { int rc = -EINVAL; unsigned min_mv, max_mv; switch (ldoh_v) { case TABLA_LDOH_1P95_V: min_mv = 160; max_mv = 1800; break; case TABLA_LDOH_2P35_V: min_mv = 200; max_mv = 2200; break; case TABLA_LDOH_2P75_V: min_mv = 240; max_mv = 2600; break; case TABLA_LDOH_2P85_V: min_mv = 250; max_mv = 2700; break; default: goto done; } if (cfilt_mv < min_mv || cfilt_mv > max_mv) goto done; for (rc = 4; rc <= 44; rc++) { min_mv = max_mv * (rc) / 44; if (min_mv >= cfilt_mv) { rc -= 4; break; } } done: return rc; } static bool tabla_is_hph_pa_on(struct snd_soc_codec *codec) { u8 hph_reg_val = 0; hph_reg_val = snd_soc_read(codec, TABLA_A_RX_HPH_CNP_EN); return (hph_reg_val & 0x30) ? true : false; } static bool tabla_is_hph_dac_on(struct snd_soc_codec *codec, int left) { u8 hph_reg_val = 0; if (left) hph_reg_val = snd_soc_read(codec, TABLA_A_RX_HPH_L_DAC_CTL); else hph_reg_val = snd_soc_read(codec, TABLA_A_RX_HPH_R_DAC_CTL); return (hph_reg_val & 0xC0) ? true : false; } static void tabla_codec_switch_micbias(struct snd_soc_codec *codec, int vddio_switch) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); int cfilt_k_val; bool mbhc_was_polling = false; switch (vddio_switch) { case 1: if (tabla->mbhc_polling_active) { tabla_codec_pause_hs_polling(codec); /* VDDIO switch enabled */ tabla->cfilt_k_value = snd_soc_read(codec, tabla->mbhc_bias_regs.cfilt_val); cfilt_k_val = tabla_find_k_value( tabla->pdata->micbias.ldoh_v, 1800); snd_soc_update_bits(codec, tabla->mbhc_bias_regs.cfilt_val, 0xFC, (cfilt_k_val << 2)); snd_soc_update_bits(codec, tabla->mbhc_bias_regs.mbhc_reg, 0x80, 0x80); snd_soc_update_bits(codec, tabla->mbhc_bias_regs.mbhc_reg, 0x10, 0x00); tabla_codec_start_hs_polling(codec); tabla->mbhc_micbias_switched = true; pr_debug("%s: VDDIO switch enabled\n", __func__); } break; case 0: if (tabla->mbhc_micbias_switched) { if (tabla->mbhc_polling_active) { tabla_codec_pause_hs_polling(codec); mbhc_was_polling = true; } /* VDDIO switch disabled */ if (tabla->cfilt_k_value != 0) snd_soc_update_bits(codec, tabla->mbhc_bias_regs.cfilt_val, 0XFC, tabla->cfilt_k_value); snd_soc_update_bits(codec, tabla->mbhc_bias_regs.mbhc_reg, 0x80, 0x00); snd_soc_update_bits(codec, tabla->mbhc_bias_regs.mbhc_reg, 0x10, 0x00); if (mbhc_was_polling) tabla_codec_start_hs_polling(codec); tabla->mbhc_micbias_switched = false; pr_debug("%s: VDDIO switch disabled\n", __func__); } break; } } static int tabla_codec_enable_micbias(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); u16 micb_int_reg; int micb_line; u8 cfilt_sel_val = 0; char *internal1_text = "Internal1"; char *internal2_text = "Internal2"; char *internal3_text = "Internal3"; pr_debug("%s %d\n", __func__, event); switch (w->reg) { case TABLA_A_MICB_1_CTL: micb_int_reg = TABLA_A_MICB_1_INT_RBIAS; cfilt_sel_val = tabla->pdata->micbias.bias1_cfilt_sel; micb_line = TABLA_MICBIAS1; break; case TABLA_A_MICB_2_CTL: micb_int_reg = TABLA_A_MICB_2_INT_RBIAS; cfilt_sel_val = tabla->pdata->micbias.bias2_cfilt_sel; micb_line = TABLA_MICBIAS2; break; case TABLA_A_MICB_3_CTL: micb_int_reg = TABLA_A_MICB_3_INT_RBIAS; cfilt_sel_val = tabla->pdata->micbias.bias3_cfilt_sel; micb_line = TABLA_MICBIAS3; break; case TABLA_1_A_MICB_4_CTL: case TABLA_2_A_MICB_4_CTL: micb_int_reg = tabla->reg_addr.micb_4_int_rbias; cfilt_sel_val = tabla->pdata->micbias.bias4_cfilt_sel; micb_line = TABLA_MICBIAS4; break; default: pr_err("%s: Error, invalid micbias register\n", __func__); return -EINVAL; } switch (event) { case SND_SOC_DAPM_PRE_PMU: /* Decide whether to switch the micbias for MBHC */ if ((w->reg == tabla->mbhc_bias_regs.ctl_reg) && tabla->mbhc_micbias_switched) tabla_codec_switch_micbias(codec, 0); snd_soc_update_bits(codec, w->reg, 0x0E, 0x0A); tabla_codec_update_cfilt_usage(codec, cfilt_sel_val, 1); if (strnstr(w->name, internal1_text, 30)) snd_soc_update_bits(codec, micb_int_reg, 0xE0, 0xE0); else if (strnstr(w->name, internal2_text, 30)) snd_soc_update_bits(codec, micb_int_reg, 0x1C, 0x1C); else if (strnstr(w->name, internal3_text, 30)) snd_soc_update_bits(codec, micb_int_reg, 0x3, 0x3); break; case SND_SOC_DAPM_POST_PMU: if (tabla->mbhc_polling_active && tabla->micbias == micb_line) { tabla_codec_pause_hs_polling(codec); tabla_codec_start_hs_polling(codec); } break; case SND_SOC_DAPM_POST_PMD: if ((w->reg == tabla->mbhc_bias_regs.ctl_reg) && tabla_is_hph_pa_on(codec)) tabla_codec_switch_micbias(codec, 1); if (strnstr(w->name, internal1_text, 30)) snd_soc_update_bits(codec, micb_int_reg, 0x80, 0x00); else if (strnstr(w->name, internal2_text, 30)) snd_soc_update_bits(codec, micb_int_reg, 0x10, 0x00); else if (strnstr(w->name, internal3_text, 30)) snd_soc_update_bits(codec, micb_int_reg, 0x2, 0x0); tabla_codec_update_cfilt_usage(codec, cfilt_sel_val, 0); break; } return 0; } static int tabla_codec_enable_dec(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; u16 dec_reset_reg; pr_debug("%s %d\n", __func__, event); if (w->reg == TABLA_A_CDC_CLK_TX_CLK_EN_B1_CTL) dec_reset_reg = TABLA_A_CDC_CLK_TX_RESET_B1_CTL; else if (w->reg == TABLA_A_CDC_CLK_TX_CLK_EN_B2_CTL) dec_reset_reg = TABLA_A_CDC_CLK_TX_RESET_B2_CTL; else { pr_err("%s: Error, incorrect dec\n", __func__); return -EINVAL; } switch (event) { case SND_SOC_DAPM_PRE_PMU: snd_soc_update_bits(codec, dec_reset_reg, 1 << w->shift, 1 << w->shift); snd_soc_update_bits(codec, dec_reset_reg, 1 << w->shift, 0x0); break; } return 0; } static int tabla_codec_reset_interpolator(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; pr_debug("%s %d %s\n", __func__, event, w->name); switch (event) { case SND_SOC_DAPM_PRE_PMU: snd_soc_update_bits(codec, TABLA_A_CDC_CLK_RX_RESET_CTL, 1 << w->shift, 1 << w->shift); snd_soc_update_bits(codec, TABLA_A_CDC_CLK_RX_RESET_CTL, 1 << w->shift, 0x0); break; } return 0; } static int tabla_codec_enable_ldo_h(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { switch (event) { case SND_SOC_DAPM_POST_PMU: case SND_SOC_DAPM_POST_PMD: usleep_range(1000, 1000); break; } return 0; } static void tabla_enable_rx_bias(struct snd_soc_codec *codec, u32 enable) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); if (enable) { tabla->rx_bias_count++; if (tabla->rx_bias_count == 1) snd_soc_update_bits(codec, TABLA_A_RX_COM_BIAS, 0x80, 0x80); } else { tabla->rx_bias_count--; if (!tabla->rx_bias_count) snd_soc_update_bits(codec, TABLA_A_RX_COM_BIAS, 0x80, 0x00); } } static int tabla_codec_enable_rx_bias(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; pr_debug("%s %d\n", __func__, event); switch (event) { case SND_SOC_DAPM_PRE_PMU: tabla_enable_rx_bias(codec, 1); break; case SND_SOC_DAPM_POST_PMD: tabla_enable_rx_bias(codec, 0); break; } return 0; } static int tabla_hphr_dac_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; pr_debug("%s %s %d\n", __func__, w->name, event); switch (event) { case SND_SOC_DAPM_PRE_PMU: snd_soc_update_bits(codec, w->reg, 0x40, 0x40); break; case SND_SOC_DAPM_POST_PMD: snd_soc_update_bits(codec, w->reg, 0x40, 0x00); break; } return 0; } static void tabla_snd_soc_jack_report(struct tabla_priv *tabla, struct snd_soc_jack *jack, int status, int mask) { /* XXX: wake_lock_timeout()? */ snd_soc_jack_report(jack, status, mask); } static void hphocp_off_report(struct tabla_priv *tabla, u32 jack_status, int irq) { struct snd_soc_codec *codec; if (tabla) { pr_info("%s: clear ocp status %x\n", __func__, jack_status); codec = tabla->codec; tabla->hph_status &= ~jack_status; if (tabla->headset_jack) tabla_snd_soc_jack_report(tabla, tabla->headset_jack, tabla->hph_status, TABLA_JACK_MASK); snd_soc_update_bits(codec, TABLA_A_RX_HPH_OCP_CTL, 0x10, 0x00); snd_soc_update_bits(codec, TABLA_A_RX_HPH_OCP_CTL, 0x10, 0x10); /* reset retry counter as PA is turned off signifying * start of new OCP detection session */ if (TABLA_IRQ_HPH_PA_OCPL_FAULT) tabla->hphlocp_cnt = 0; else tabla->hphrocp_cnt = 0; tabla_enable_irq(codec->control_data, irq); } else { pr_err("%s: Bad tabla private data\n", __func__); } } static void hphlocp_off_report(struct work_struct *work) { struct tabla_priv *tabla = container_of(work, struct tabla_priv, hphlocp_work); hphocp_off_report(tabla, SND_JACK_OC_HPHL, TABLA_IRQ_HPH_PA_OCPL_FAULT); } static void hphrocp_off_report(struct work_struct *work) { struct tabla_priv *tabla = container_of(work, struct tabla_priv, hphrocp_work); hphocp_off_report(tabla, SND_JACK_OC_HPHR, TABLA_IRQ_HPH_PA_OCPR_FAULT); } static int tabla_hph_pa_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); u8 mbhc_micb_ctl_val; pr_debug("%s: event = %d\n", __func__, event); switch (event) { case SND_SOC_DAPM_PRE_PMU: mbhc_micb_ctl_val = snd_soc_read(codec, tabla->mbhc_bias_regs.ctl_reg); if (!(mbhc_micb_ctl_val & 0x80) && !tabla->mbhc_micbias_switched) tabla_codec_switch_micbias(codec, 1); break; case SND_SOC_DAPM_POST_PMD: /* schedule work is required because at the time HPH PA DAPM * event callback is called by DAPM framework, CODEC dapm mutex * would have been locked while snd_soc_jack_report also * attempts to acquire same lock. */ if (w->shift == 5) { clear_bit(TABLA_HPHL_PA_OFF_ACK, &tabla->hph_pa_dac_state); clear_bit(TABLA_HPHL_DAC_OFF_ACK, &tabla->hph_pa_dac_state); if (tabla->hph_status & SND_JACK_OC_HPHL) schedule_work(&tabla->hphlocp_work); } else if (w->shift == 4) { clear_bit(TABLA_HPHR_PA_OFF_ACK, &tabla->hph_pa_dac_state); clear_bit(TABLA_HPHR_DAC_OFF_ACK, &tabla->hph_pa_dac_state); if (tabla->hph_status & SND_JACK_OC_HPHR) schedule_work(&tabla->hphrocp_work); } if (tabla->mbhc_micbias_switched) tabla_codec_switch_micbias(codec, 0); pr_debug("%s: sleep 10 ms after %s PA disable.\n", __func__, w->name); usleep_range(10000, 10000); break; } return 0; } static void tabla_get_mbhc_micbias_regs(struct snd_soc_codec *codec, struct mbhc_micbias_regs *micbias_regs) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); unsigned int cfilt; switch (tabla->micbias) { case TABLA_MICBIAS1: cfilt = tabla->pdata->micbias.bias1_cfilt_sel; micbias_regs->mbhc_reg = TABLA_A_MICB_1_MBHC; micbias_regs->int_rbias = TABLA_A_MICB_1_INT_RBIAS; micbias_regs->ctl_reg = TABLA_A_MICB_1_CTL; break; case TABLA_MICBIAS2: cfilt = tabla->pdata->micbias.bias2_cfilt_sel; micbias_regs->mbhc_reg = TABLA_A_MICB_2_MBHC; micbias_regs->int_rbias = TABLA_A_MICB_2_INT_RBIAS; micbias_regs->ctl_reg = TABLA_A_MICB_2_CTL; break; case TABLA_MICBIAS3: cfilt = tabla->pdata->micbias.bias3_cfilt_sel; micbias_regs->mbhc_reg = TABLA_A_MICB_3_MBHC; micbias_regs->int_rbias = TABLA_A_MICB_3_INT_RBIAS; micbias_regs->ctl_reg = TABLA_A_MICB_3_CTL; break; case TABLA_MICBIAS4: cfilt = tabla->pdata->micbias.bias4_cfilt_sel; micbias_regs->mbhc_reg = tabla->reg_addr.micb_4_mbhc; micbias_regs->int_rbias = tabla->reg_addr.micb_4_int_rbias; micbias_regs->ctl_reg = tabla->reg_addr.micb_4_ctl; break; default: /* Should never reach here */ pr_err("%s: Invalid MIC BIAS for MBHC\n", __func__); return; } micbias_regs->cfilt_sel = cfilt; switch (cfilt) { case TABLA_CFILT1_SEL: micbias_regs->cfilt_val = TABLA_A_MICB_CFILT_1_VAL; micbias_regs->cfilt_ctl = TABLA_A_MICB_CFILT_1_CTL; tabla->mbhc_data.micb_mv = tabla->pdata->micbias.cfilt1_mv; break; case TABLA_CFILT2_SEL: micbias_regs->cfilt_val = TABLA_A_MICB_CFILT_2_VAL; micbias_regs->cfilt_ctl = TABLA_A_MICB_CFILT_2_CTL; tabla->mbhc_data.micb_mv = tabla->pdata->micbias.cfilt2_mv; break; case TABLA_CFILT3_SEL: micbias_regs->cfilt_val = TABLA_A_MICB_CFILT_3_VAL; micbias_regs->cfilt_ctl = TABLA_A_MICB_CFILT_3_CTL; tabla->mbhc_data.micb_mv = tabla->pdata->micbias.cfilt3_mv; break; } } static const struct snd_soc_dapm_widget tabla_dapm_i2s_widgets[] = { SND_SOC_DAPM_SUPPLY("RX_I2S_CLK", TABLA_A_CDC_CLK_RX_I2S_CTL, 4, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("TX_I2S_CLK", TABLA_A_CDC_CLK_TX_I2S_CTL, 4, 0, NULL, 0), }; static int tabla_lineout_dac_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; pr_debug("%s %s %d\n", __func__, w->name, event); switch (event) { case SND_SOC_DAPM_PRE_PMU: snd_soc_update_bits(codec, w->reg, 0x40, 0x40); break; case SND_SOC_DAPM_POST_PMD: snd_soc_update_bits(codec, w->reg, 0x40, 0x00); break; } return 0; } static const struct snd_soc_dapm_widget tabla_dapm_widgets[] = { /*RX stuff */ SND_SOC_DAPM_OUTPUT("EAR"), SND_SOC_DAPM_PGA("EAR PA", TABLA_A_RX_EAR_EN, 4, 0, NULL, 0), SND_SOC_DAPM_MIXER("DAC1", TABLA_A_RX_EAR_EN, 6, 0, dac1_switch, ARRAY_SIZE(dac1_switch)), SND_SOC_DAPM_AIF_IN("SLIM RX1", "AIF1 Playback", 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_AIF_IN("SLIM RX2", "AIF1 Playback", 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_AIF_IN("SLIM RX3", "AIF1 Playback", 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_AIF_IN("SLIM RX4", "AIF1 Playback", 0, SND_SOC_NOPM, 0, 0), /* Headphone */ SND_SOC_DAPM_OUTPUT("HEADPHONE"), SND_SOC_DAPM_PGA_E("HPHL", TABLA_A_RX_HPH_CNP_EN, 5, 0, NULL, 0, tabla_hph_pa_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MIXER("HPHL DAC", TABLA_A_RX_HPH_L_DAC_CTL, 7, 0, hphl_switch, ARRAY_SIZE(hphl_switch)), SND_SOC_DAPM_PGA_E("HPHR", TABLA_A_RX_HPH_CNP_EN, 4, 0, NULL, 0, tabla_hph_pa_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_DAC_E("HPHR DAC", NULL, TABLA_A_RX_HPH_R_DAC_CTL, 7, 0, tabla_hphr_dac_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), /* Speaker */ SND_SOC_DAPM_OUTPUT("LINEOUT1"), SND_SOC_DAPM_OUTPUT("LINEOUT2"), SND_SOC_DAPM_OUTPUT("LINEOUT3"), SND_SOC_DAPM_OUTPUT("LINEOUT4"), SND_SOC_DAPM_OUTPUT("LINEOUT5"), SND_SOC_DAPM_PGA_E("LINEOUT1 PA", TABLA_A_RX_LINE_CNP_EN, 0, 0, NULL, 0, tabla_codec_enable_lineout, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_PGA_E("LINEOUT2 PA", TABLA_A_RX_LINE_CNP_EN, 1, 0, NULL, 0, tabla_codec_enable_lineout, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_PGA_E("LINEOUT3 PA", TABLA_A_RX_LINE_CNP_EN, 2, 0, NULL, 0, tabla_codec_enable_lineout, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_PGA_E("LINEOUT4 PA", TABLA_A_RX_LINE_CNP_EN, 3, 0, NULL, 0, tabla_codec_enable_lineout, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_PGA_E("LINEOUT5 PA", TABLA_A_RX_LINE_CNP_EN, 4, 0, NULL, 0, tabla_codec_enable_lineout, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_DAC_E("LINEOUT1 DAC", NULL, TABLA_A_RX_LINE_1_DAC_CTL, 7, 0 , tabla_lineout_dac_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_DAC_E("LINEOUT2 DAC", NULL, TABLA_A_RX_LINE_2_DAC_CTL, 7, 0 , tabla_lineout_dac_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_DAC_E("LINEOUT3 DAC", NULL, TABLA_A_RX_LINE_3_DAC_CTL, 7, 0 , tabla_lineout_dac_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_SWITCH("LINEOUT3 DAC GROUND", SND_SOC_NOPM, 0, 0, &lineout3_ground_switch), SND_SOC_DAPM_DAC_E("LINEOUT4 DAC", NULL, TABLA_A_RX_LINE_4_DAC_CTL, 7, 0 , tabla_lineout_dac_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_SWITCH("LINEOUT4 DAC GROUND", SND_SOC_NOPM, 0, 0, &lineout4_ground_switch), SND_SOC_DAPM_DAC_E("LINEOUT5 DAC", NULL, TABLA_A_RX_LINE_5_DAC_CTL, 7, 0 , tabla_lineout_dac_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MIXER_E("RX1 MIX1", TABLA_A_CDC_CLK_RX_B1_CTL, 0, 0, NULL, 0, tabla_codec_reset_interpolator, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_MIXER_E("RX2 MIX1", TABLA_A_CDC_CLK_RX_B1_CTL, 1, 0, NULL, 0, tabla_codec_reset_interpolator, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_MIXER_E("RX3 MIX1", TABLA_A_CDC_CLK_RX_B1_CTL, 2, 0, NULL, 0, tabla_codec_reset_interpolator, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_MIXER_E("RX4 MIX1", TABLA_A_CDC_CLK_RX_B1_CTL, 3, 0, NULL, 0, tabla_codec_reset_interpolator, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_MIXER_E("RX5 MIX1", TABLA_A_CDC_CLK_RX_B1_CTL, 4, 0, NULL, 0, tabla_codec_reset_interpolator, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_MIXER_E("RX6 MIX1", TABLA_A_CDC_CLK_RX_B1_CTL, 5, 0, NULL, 0, tabla_codec_reset_interpolator, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_MIXER_E("RX7 MIX1", TABLA_A_CDC_CLK_RX_B1_CTL, 6, 0, NULL, 0, tabla_codec_reset_interpolator, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_MUX_E("RX4 DSM MUX", TABLA_A_CDC_CLK_RX_B1_CTL, 3, 0, &rx4_dsm_mux, tabla_codec_reset_interpolator, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_MUX_E("RX6 DSM MUX", TABLA_A_CDC_CLK_RX_B1_CTL, 5, 0, &rx6_dsm_mux, tabla_codec_reset_interpolator, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_MIXER("RX1 CHAIN", TABLA_A_CDC_RX1_B6_CTL, 5, 0, NULL, 0), SND_SOC_DAPM_MIXER("RX2 CHAIN", TABLA_A_CDC_RX2_B6_CTL, 5, 0, NULL, 0), SND_SOC_DAPM_MUX("RX1 MIX1 INP1", SND_SOC_NOPM, 0, 0, &rx_mix1_inp1_mux), SND_SOC_DAPM_MUX("RX1 MIX1 INP2", SND_SOC_NOPM, 0, 0, &rx_mix1_inp2_mux), SND_SOC_DAPM_MUX("RX2 MIX1 INP1", SND_SOC_NOPM, 0, 0, &rx2_mix1_inp1_mux), SND_SOC_DAPM_MUX("RX2 MIX1 INP2", SND_SOC_NOPM, 0, 0, &rx2_mix1_inp2_mux), SND_SOC_DAPM_MUX("RX3 MIX1 INP1", SND_SOC_NOPM, 0, 0, &rx3_mix1_inp1_mux), SND_SOC_DAPM_MUX("RX3 MIX1 INP2", SND_SOC_NOPM, 0, 0, &rx3_mix1_inp2_mux), SND_SOC_DAPM_MUX("RX4 MIX1 INP1", SND_SOC_NOPM, 0, 0, &rx4_mix1_inp1_mux), SND_SOC_DAPM_MUX("RX4 MIX1 INP2", SND_SOC_NOPM, 0, 0, &rx4_mix1_inp2_mux), SND_SOC_DAPM_MUX("RX5 MIX1 INP1", SND_SOC_NOPM, 0, 0, &rx5_mix1_inp1_mux), SND_SOC_DAPM_MUX("RX5 MIX1 INP2", SND_SOC_NOPM, 0, 0, &rx5_mix1_inp2_mux), SND_SOC_DAPM_MUX("RX6 MIX1 INP1", SND_SOC_NOPM, 0, 0, &rx6_mix1_inp1_mux), SND_SOC_DAPM_MUX("RX6 MIX1 INP2", SND_SOC_NOPM, 0, 0, &rx6_mix1_inp2_mux), SND_SOC_DAPM_MUX("RX7 MIX1 INP1", SND_SOC_NOPM, 0, 0, &rx7_mix1_inp1_mux), SND_SOC_DAPM_MUX("RX7 MIX1 INP2", SND_SOC_NOPM, 0, 0, &rx7_mix1_inp2_mux), SND_SOC_DAPM_SUPPLY("CP", TABLA_A_CP_EN, 0, 0, tabla_codec_enable_charge_pump, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD), SND_SOC_DAPM_SUPPLY("RX_BIAS", SND_SOC_NOPM, 0, 0, tabla_codec_enable_rx_bias, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), /* TX */ SND_SOC_DAPM_SUPPLY("CDC_CONN", TABLA_A_CDC_CLK_OTHR_CTL, 2, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("LDO_H", TABLA_A_LDO_H_MODE_1, 7, 0, tabla_codec_enable_ldo_h, SND_SOC_DAPM_POST_PMU), SND_SOC_DAPM_INPUT("AMIC1"), SND_SOC_DAPM_MICBIAS_E("MIC BIAS1 External", TABLA_A_MICB_1_CTL, 7, 0, tabla_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MICBIAS_E("MIC BIAS1 Internal1", TABLA_A_MICB_1_CTL, 7, 0, tabla_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MICBIAS_E("MIC BIAS1 Internal2", TABLA_A_MICB_1_CTL, 7, 0, tabla_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_ADC_E("ADC1", NULL, TABLA_A_TX_1_2_EN, 7, 0, tabla_codec_enable_adc, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_INPUT("AMIC3"), SND_SOC_DAPM_ADC_E("ADC3", NULL, TABLA_A_TX_3_4_EN, 7, 0, tabla_codec_enable_adc, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_INPUT("AMIC4"), SND_SOC_DAPM_ADC_E("ADC4", NULL, TABLA_A_TX_3_4_EN, 3, 0, tabla_codec_enable_adc, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_INPUT("AMIC5"), SND_SOC_DAPM_ADC_E("ADC5", NULL, TABLA_A_TX_5_6_EN, 7, 0, tabla_codec_enable_adc, SND_SOC_DAPM_POST_PMU), SND_SOC_DAPM_INPUT("AMIC6"), SND_SOC_DAPM_ADC_E("ADC6", NULL, TABLA_A_TX_5_6_EN, 3, 0, tabla_codec_enable_adc, SND_SOC_DAPM_POST_PMU), SND_SOC_DAPM_MUX_E("DEC1 MUX", TABLA_A_CDC_CLK_TX_CLK_EN_B1_CTL, 0, 0, &dec1_mux, tabla_codec_enable_dec, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_MUX_E("DEC2 MUX", TABLA_A_CDC_CLK_TX_CLK_EN_B1_CTL, 1, 0, &dec2_mux, tabla_codec_enable_dec, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_MUX_E("DEC3 MUX", TABLA_A_CDC_CLK_TX_CLK_EN_B1_CTL, 2, 0, &dec3_mux, tabla_codec_enable_dec, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_MUX_E("DEC4 MUX", TABLA_A_CDC_CLK_TX_CLK_EN_B1_CTL, 3, 0, &dec4_mux, tabla_codec_enable_dec, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_MUX_E("DEC5 MUX", TABLA_A_CDC_CLK_TX_CLK_EN_B1_CTL, 4, 0, &dec5_mux, tabla_codec_enable_dec, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_MUX_E("DEC6 MUX", TABLA_A_CDC_CLK_TX_CLK_EN_B1_CTL, 5, 0, &dec6_mux, tabla_codec_enable_dec, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_MUX_E("DEC7 MUX", TABLA_A_CDC_CLK_TX_CLK_EN_B1_CTL, 6, 0, &dec7_mux, tabla_codec_enable_dec, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_MUX_E("DEC8 MUX", TABLA_A_CDC_CLK_TX_CLK_EN_B1_CTL, 7, 0, &dec8_mux, tabla_codec_enable_dec, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_MUX_E("DEC9 MUX", TABLA_A_CDC_CLK_TX_CLK_EN_B2_CTL, 0, 0, &dec9_mux, tabla_codec_enable_dec, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_MUX_E("DEC10 MUX", TABLA_A_CDC_CLK_TX_CLK_EN_B2_CTL, 1, 0, &dec10_mux, tabla_codec_enable_dec, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_MUX("ANC1 MUX", SND_SOC_NOPM, 0, 0, &anc1_mux), SND_SOC_DAPM_MUX("ANC2 MUX", SND_SOC_NOPM, 0, 0, &anc2_mux), SND_SOC_DAPM_MIXER_E("ANC", SND_SOC_NOPM, 0, 0, NULL, 0, tabla_codec_enable_anc, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MUX("ANC1 FB MUX", SND_SOC_NOPM, 0, 0, &anc1_fb_mux), SND_SOC_DAPM_INPUT("AMIC2"), SND_SOC_DAPM_MICBIAS_E("MIC BIAS2 External", TABLA_A_MICB_2_CTL, 7, 0, tabla_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MICBIAS_E("MIC BIAS2 Internal1", TABLA_A_MICB_2_CTL, 7, 0, tabla_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MICBIAS_E("MIC BIAS2 Internal2", TABLA_A_MICB_2_CTL, 7, 0, tabla_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MICBIAS_E("MIC BIAS2 Internal3", TABLA_A_MICB_2_CTL, 7, 0, tabla_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MICBIAS_E("MIC BIAS3 External", TABLA_A_MICB_3_CTL, 7, 0, tabla_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MICBIAS_E("MIC BIAS3 Internal1", TABLA_A_MICB_3_CTL, 7, 0, tabla_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MICBIAS_E("MIC BIAS3 Internal2", TABLA_A_MICB_3_CTL, 7, 0, tabla_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_ADC_E("ADC2", NULL, TABLA_A_TX_1_2_EN, 3, 0, tabla_codec_enable_adc, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MUX("SLIM TX1 MUX", SND_SOC_NOPM, 0, 0, &sb_tx1_mux), SND_SOC_DAPM_AIF_OUT("SLIM TX1", "AIF1 Capture", NULL, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_MUX("SLIM TX5 MUX", SND_SOC_NOPM, 0, 0, &sb_tx5_mux), SND_SOC_DAPM_AIF_OUT("SLIM TX5", "AIF1 Capture", NULL, SND_SOC_NOPM, 4, 0), SND_SOC_DAPM_MUX("SLIM TX6 MUX", SND_SOC_NOPM, 0, 0, &sb_tx6_mux), SND_SOC_DAPM_AIF_OUT("SLIM TX6", "AIF1 Capture", NULL, SND_SOC_NOPM, 5, 0), SND_SOC_DAPM_MUX("SLIM TX7 MUX", SND_SOC_NOPM, 0, 0, &sb_tx7_mux), SND_SOC_DAPM_AIF_OUT("SLIM TX7", "AIF1 Capture", NULL, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_MUX("SLIM TX8 MUX", SND_SOC_NOPM, 0, 0, &sb_tx8_mux), SND_SOC_DAPM_AIF_OUT("SLIM TX8", "AIF1 Capture", NULL, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_MUX("SLIM TX9 MUX", SND_SOC_NOPM, 0, 0, &sb_tx9_mux), SND_SOC_DAPM_AIF_OUT("SLIM TX9", "AIF1 Capture", NULL, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_MUX("SLIM TX10 MUX", SND_SOC_NOPM, 0, 0, &sb_tx10_mux), SND_SOC_DAPM_AIF_OUT("SLIM TX10", "AIF1 Capture", NULL, SND_SOC_NOPM, 0, 0), /* Digital Mic Inputs */ SND_SOC_DAPM_ADC_E("DMIC1", NULL, SND_SOC_NOPM, 0, 0, tabla_codec_enable_dmic, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_ADC_E("DMIC2", NULL, SND_SOC_NOPM, 0, 0, tabla_codec_enable_dmic, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_ADC_E("DMIC3", NULL, SND_SOC_NOPM, 0, 0, tabla_codec_enable_dmic, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_ADC_E("DMIC4", NULL, SND_SOC_NOPM, 0, 0, tabla_codec_enable_dmic, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_ADC_E("DMIC5", NULL, SND_SOC_NOPM, 0, 0, tabla_codec_enable_dmic, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_ADC_E("DMIC6", NULL, SND_SOC_NOPM, 0, 0, tabla_codec_enable_dmic, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), /* Sidetone */ SND_SOC_DAPM_MUX("IIR1 INP1 MUX", SND_SOC_NOPM, 0, 0, &iir1_inp1_mux), SND_SOC_DAPM_PGA("IIR1", TABLA_A_CDC_CLK_SD_CTL, 0, 0, NULL, 0), }; static const struct snd_soc_dapm_widget tabla_1_x_dapm_widgets[] = { SND_SOC_DAPM_MICBIAS_E("MIC BIAS4 External", TABLA_1_A_MICB_4_CTL, 7, 0, tabla_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), }; static const struct snd_soc_dapm_widget tabla_2_higher_dapm_widgets[] = { SND_SOC_DAPM_MICBIAS_E("MIC BIAS4 External", TABLA_2_A_MICB_4_CTL, 7, 0, tabla_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), }; static const struct snd_soc_dapm_route audio_i2s_map[] = { {"RX_I2S_CLK", NULL, "CDC_CONN"}, {"SLIM RX1", NULL, "RX_I2S_CLK"}, {"SLIM RX2", NULL, "RX_I2S_CLK"}, {"SLIM RX3", NULL, "RX_I2S_CLK"}, {"SLIM RX4", NULL, "RX_I2S_CLK"}, {"SLIM TX7", NULL, "TX_I2S_CLK"}, {"SLIM TX8", NULL, "TX_I2S_CLK"}, {"SLIM TX9", NULL, "TX_I2S_CLK"}, {"SLIM TX10", NULL, "TX_I2S_CLK"}, }; static const struct snd_soc_dapm_route audio_map[] = { /* SLIMBUS Connections */ {"SLIM TX1", NULL, "SLIM TX1 MUX"}, {"SLIM TX1 MUX", "DEC1", "DEC1 MUX"}, {"SLIM TX5", NULL, "SLIM TX5 MUX"}, {"SLIM TX5 MUX", "DEC5", "DEC5 MUX"}, {"SLIM TX6", NULL, "SLIM TX6 MUX"}, {"SLIM TX6 MUX", "DEC6", "DEC6 MUX"}, {"SLIM TX7", NULL, "SLIM TX7 MUX"}, {"SLIM TX7 MUX", "DEC1", "DEC1 MUX"}, {"SLIM TX7 MUX", "DEC2", "DEC2 MUX"}, {"SLIM TX7 MUX", "DEC3", "DEC3 MUX"}, {"SLIM TX7 MUX", "DEC4", "DEC4 MUX"}, {"SLIM TX7 MUX", "DEC5", "DEC5 MUX"}, {"SLIM TX7 MUX", "DEC6", "DEC6 MUX"}, {"SLIM TX7 MUX", "DEC7", "DEC7 MUX"}, {"SLIM TX7 MUX", "DEC8", "DEC8 MUX"}, {"SLIM TX7 MUX", "DEC9", "DEC9 MUX"}, {"SLIM TX7 MUX", "DEC10", "DEC10 MUX"}, {"SLIM TX8", NULL, "SLIM TX8 MUX"}, {"SLIM TX8 MUX", "DEC1", "DEC1 MUX"}, {"SLIM TX8 MUX", "DEC2", "DEC2 MUX"}, {"SLIM TX8 MUX", "DEC3", "DEC3 MUX"}, {"SLIM TX8 MUX", "DEC4", "DEC4 MUX"}, {"SLIM TX8 MUX", "DEC5", "DEC5 MUX"}, {"SLIM TX8 MUX", "DEC6", "DEC6 MUX"}, {"SLIM TX9", NULL, "SLIM TX9 MUX"}, {"SLIM TX9 MUX", "DEC1", "DEC1 MUX"}, {"SLIM TX9 MUX", "DEC2", "DEC2 MUX"}, {"SLIM TX9 MUX", "DEC3", "DEC3 MUX"}, {"SLIM TX9 MUX", "DEC4", "DEC4 MUX"}, {"SLIM TX9 MUX", "DEC5", "DEC5 MUX"}, {"SLIM TX9 MUX", "DEC6", "DEC6 MUX"}, {"SLIM TX9 MUX", "DEC7", "DEC7 MUX"}, {"SLIM TX9 MUX", "DEC8", "DEC8 MUX"}, {"SLIM TX9 MUX", "DEC9", "DEC9 MUX"}, {"SLIM TX9 MUX", "DEC10", "DEC10 MUX"}, {"SLIM TX10", NULL, "SLIM TX10 MUX"}, {"SLIM TX10 MUX", "DEC1", "DEC1 MUX"}, {"SLIM TX10 MUX", "DEC2", "DEC2 MUX"}, {"SLIM TX10 MUX", "DEC3", "DEC3 MUX"}, {"SLIM TX10 MUX", "DEC4", "DEC4 MUX"}, {"SLIM TX10 MUX", "DEC5", "DEC5 MUX"}, {"SLIM TX10 MUX", "DEC6", "DEC6 MUX"}, {"SLIM TX10 MUX", "DEC7", "DEC7 MUX"}, {"SLIM TX10 MUX", "DEC8", "DEC8 MUX"}, {"SLIM TX10 MUX", "DEC9", "DEC9 MUX"}, {"SLIM TX10 MUX", "DEC10", "DEC10 MUX"}, /* Earpiece (RX MIX1) */ {"EAR", NULL, "EAR PA"}, {"EAR PA", NULL, "DAC1"}, {"DAC1", NULL, "CP"}, {"ANC1 FB MUX", "EAR_HPH_L", "RX1 MIX1"}, {"ANC1 FB MUX", "EAR_LINE_1", "RX2 MIX1"}, {"ANC", NULL, "ANC1 FB MUX"}, /* Headset (RX MIX1 and RX MIX2) */ {"HEADPHONE", NULL, "HPHL"}, {"HEADPHONE", NULL, "HPHR"}, {"HPHL", NULL, "HPHL DAC"}, {"HPHR", NULL, "HPHR DAC"}, {"HPHL DAC", NULL, "CP"}, {"HPHR DAC", NULL, "CP"}, {"ANC", NULL, "ANC1 MUX"}, {"ANC", NULL, "ANC2 MUX"}, {"ANC1 MUX", "ADC1", "ADC1"}, {"ANC1 MUX", "ADC2", "ADC2"}, {"ANC1 MUX", "ADC3", "ADC3"}, {"ANC1 MUX", "ADC4", "ADC4"}, {"ANC2 MUX", "ADC1", "ADC1"}, {"ANC2 MUX", "ADC2", "ADC2"}, {"ANC2 MUX", "ADC3", "ADC3"}, {"ANC2 MUX", "ADC4", "ADC4"}, {"ANC", NULL, "CDC_CONN"}, {"DAC1", "Switch", "RX1 CHAIN"}, {"HPHL DAC", "Switch", "RX1 CHAIN"}, {"HPHR DAC", NULL, "RX2 CHAIN"}, {"LINEOUT1", NULL, "LINEOUT1 PA"}, {"LINEOUT2", NULL, "LINEOUT2 PA"}, {"LINEOUT3", NULL, "LINEOUT3 PA"}, {"LINEOUT4", NULL, "LINEOUT4 PA"}, {"LINEOUT5", NULL, "LINEOUT5 PA"}, {"LINEOUT1 PA", NULL, "LINEOUT1 DAC"}, {"LINEOUT2 PA", NULL, "LINEOUT2 DAC"}, {"LINEOUT3 PA", NULL, "LINEOUT3 DAC"}, {"LINEOUT4 PA", NULL, "LINEOUT4 DAC"}, {"LINEOUT5 PA", NULL, "LINEOUT5 DAC"}, {"LINEOUT1 DAC", NULL, "RX3 MIX1"}, {"LINEOUT5 DAC", NULL, "RX7 MIX1"}, {"RX1 CHAIN", NULL, "RX1 MIX1"}, {"RX2 CHAIN", NULL, "RX2 MIX1"}, {"RX1 CHAIN", NULL, "ANC"}, {"RX2 CHAIN", NULL, "ANC"}, {"CP", NULL, "RX_BIAS"}, {"LINEOUT1 DAC", NULL, "RX_BIAS"}, {"LINEOUT2 DAC", NULL, "RX_BIAS"}, {"LINEOUT3 DAC", NULL, "RX_BIAS"}, {"LINEOUT4 DAC", NULL, "RX_BIAS"}, {"LINEOUT5 DAC", NULL, "RX_BIAS"}, {"RX1 MIX1", NULL, "RX1 MIX1 INP1"}, {"RX1 MIX1", NULL, "RX1 MIX1 INP2"}, {"RX2 MIX1", NULL, "RX2 MIX1 INP1"}, {"RX2 MIX1", NULL, "RX2 MIX1 INP2"}, {"RX3 MIX1", NULL, "RX3 MIX1 INP1"}, {"RX3 MIX1", NULL, "RX3 MIX1 INP2"}, {"RX4 MIX1", NULL, "RX4 MIX1 INP1"}, {"RX4 MIX1", NULL, "RX4 MIX1 INP2"}, {"RX5 MIX1", NULL, "RX5 MIX1 INP1"}, {"RX5 MIX1", NULL, "RX5 MIX1 INP2"}, {"RX6 MIX1", NULL, "RX6 MIX1 INP1"}, {"RX6 MIX1", NULL, "RX6 MIX1 INP2"}, {"RX7 MIX1", NULL, "RX7 MIX1 INP1"}, {"RX7 MIX1", NULL, "RX7 MIX1 INP2"}, {"RX1 MIX1 INP1", "RX1", "SLIM RX1"}, {"RX1 MIX1 INP1", "RX2", "SLIM RX2"}, {"RX1 MIX1 INP1", "RX3", "SLIM RX3"}, {"RX1 MIX1 INP1", "RX4", "SLIM RX4"}, {"RX1 MIX1 INP1", "IIR1", "IIR1"}, {"RX1 MIX1 INP2", "RX1", "SLIM RX1"}, {"RX1 MIX1 INP2", "RX2", "SLIM RX2"}, {"RX1 MIX1 INP2", "RX3", "SLIM RX3"}, {"RX1 MIX1 INP2", "RX4", "SLIM RX4"}, {"RX1 MIX1 INP2", "IIR1", "IIR1"}, {"RX2 MIX1 INP1", "RX1", "SLIM RX1"}, {"RX2 MIX1 INP1", "RX2", "SLIM RX2"}, {"RX2 MIX1 INP1", "RX3", "SLIM RX3"}, {"RX2 MIX1 INP1", "RX4", "SLIM RX4"}, {"RX2 MIX1 INP1", "IIR1", "IIR1"}, {"RX2 MIX1 INP2", "RX1", "SLIM RX1"}, {"RX2 MIX1 INP2", "RX2", "SLIM RX2"}, {"RX2 MIX1 INP2", "RX3", "SLIM RX3"}, {"RX2 MIX1 INP2", "RX4", "SLIM RX4"}, {"RX2 MIX1 INP2", "IIR1", "IIR1"}, {"RX3 MIX1 INP1", "RX1", "SLIM RX1"}, {"RX3 MIX1 INP1", "RX2", "SLIM RX2"}, {"RX3 MIX1 INP1", "RX3", "SLIM RX3"}, {"RX3 MIX1 INP1", "RX4", "SLIM RX4"}, {"RX3 MIX1 INP1", "IIR1", "IIR1"}, {"RX3 MIX1 INP2", "RX1", "SLIM RX1"}, {"RX3 MIX1 INP2", "RX2", "SLIM RX2"}, {"RX3 MIX1 INP2", "RX3", "SLIM RX3"}, {"RX3 MIX1 INP2", "RX4", "SLIM RX4"}, {"RX3 MIX1 INP2", "IIR1", "IIR1"}, {"RX4 MIX1 INP1", "RX1", "SLIM RX1"}, {"RX4 MIX1 INP1", "RX2", "SLIM RX2"}, {"RX4 MIX1 INP1", "RX3", "SLIM RX3"}, {"RX4 MIX1 INP1", "RX4", "SLIM RX4"}, {"RX4 MIX1 INP1", "IIR1", "IIR1"}, {"RX4 MIX1 INP2", "RX1", "SLIM RX1"}, {"RX4 MIX1 INP2", "RX2", "SLIM RX2"}, {"RX4 MIX1 INP2", "RX3", "SLIM RX3"}, {"RX4 MIX1 INP2", "RX4", "SLIM RX4"}, {"RX4 MIX1 INP2", "IIR1", "IIR1"}, {"RX5 MIX1 INP1", "RX1", "SLIM RX1"}, {"RX5 MIX1 INP1", "RX2", "SLIM RX2"}, {"RX5 MIX1 INP1", "RX3", "SLIM RX3"}, {"RX5 MIX1 INP1", "RX4", "SLIM RX4"}, {"RX5 MIX1 INP1", "IIR1", "IIR1"}, {"RX5 MIX1 INP2", "RX1", "SLIM RX1"}, {"RX5 MIX1 INP2", "RX2", "SLIM RX2"}, {"RX5 MIX1 INP2", "RX3", "SLIM RX3"}, {"RX5 MIX1 INP2", "RX4", "SLIM RX4"}, {"RX5 MIX1 INP2", "IIR1", "IIR1"}, {"RX6 MIX1 INP1", "RX1", "SLIM RX1"}, {"RX6 MIX1 INP1", "RX2", "SLIM RX2"}, {"RX6 MIX1 INP1", "RX3", "SLIM RX3"}, {"RX6 MIX1 INP1", "RX4", "SLIM RX4"}, {"RX6 MIX1 INP1", "IIR1", "IIR1"}, {"RX6 MIX1 INP2", "RX1", "SLIM RX1"}, {"RX6 MIX1 INP2", "RX2", "SLIM RX2"}, {"RX6 MIX1 INP2", "RX3", "SLIM RX3"}, {"RX6 MIX1 INP2", "RX4", "SLIM RX4"}, {"RX6 MIX1 INP2", "IIR1", "IIR1"}, {"RX7 MIX1 INP1", "RX1", "SLIM RX1"}, {"RX7 MIX1 INP1", "RX2", "SLIM RX2"}, {"RX7 MIX1 INP1", "RX3", "SLIM RX3"}, {"RX7 MIX1 INP1", "RX4", "SLIM RX4"}, {"RX7 MIX1 INP1", "IIR1", "IIR1"}, {"RX7 MIX1 INP2", "RX1", "SLIM RX1"}, {"RX7 MIX1 INP2", "RX2", "SLIM RX2"}, {"RX7 MIX1 INP2", "RX3", "SLIM RX3"}, {"RX7 MIX1 INP2", "RX4", "SLIM RX4"}, {"RX7 MIX1 INP2", "IIR1", "IIR1"}, /* Decimator Inputs */ {"DEC1 MUX", "DMIC1", "DMIC1"}, {"DEC1 MUX", "ADC6", "ADC6"}, {"DEC1 MUX", NULL, "CDC_CONN"}, {"DEC2 MUX", "DMIC2", "DMIC2"}, {"DEC2 MUX", "ADC5", "ADC5"}, {"DEC2 MUX", NULL, "CDC_CONN"}, {"DEC3 MUX", "DMIC3", "DMIC3"}, {"DEC3 MUX", "ADC4", "ADC4"}, {"DEC3 MUX", NULL, "CDC_CONN"}, {"DEC4 MUX", "DMIC4", "DMIC4"}, {"DEC4 MUX", "ADC3", "ADC3"}, {"DEC4 MUX", NULL, "CDC_CONN"}, {"DEC5 MUX", "DMIC5", "DMIC5"}, {"DEC5 MUX", "ADC2", "ADC2"}, {"DEC5 MUX", NULL, "CDC_CONN"}, {"DEC6 MUX", "DMIC6", "DMIC6"}, {"DEC6 MUX", "ADC1", "ADC1"}, {"DEC6 MUX", NULL, "CDC_CONN"}, {"DEC7 MUX", "DMIC1", "DMIC1"}, {"DEC7 MUX", "ADC6", "ADC6"}, {"DEC7 MUX", NULL, "CDC_CONN"}, {"DEC8 MUX", "ADC5", "ADC5"}, {"DEC8 MUX", NULL, "CDC_CONN"}, {"DEC9 MUX", "ADC3", "ADC3"}, {"DEC9 MUX", NULL, "CDC_CONN"}, {"DEC10 MUX", "ADC4", "ADC4"}, {"DEC10 MUX", NULL, "CDC_CONN"}, /* ADC Connections */ {"ADC1", NULL, "AMIC1"}, {"ADC2", NULL, "AMIC2"}, {"ADC3", NULL, "AMIC3"}, {"ADC4", NULL, "AMIC4"}, {"ADC5", NULL, "AMIC5"}, {"ADC6", NULL, "AMIC6"}, {"IIR1", NULL, "IIR1 INP1 MUX"}, {"IIR1 INP1 MUX", "DEC1", "DEC1 MUX"}, {"IIR1 INP1 MUX", "DEC2", "DEC2 MUX"}, {"IIR1 INP1 MUX", "DEC3", "DEC3 MUX"}, {"IIR1 INP1 MUX", "DEC4", "DEC4 MUX"}, {"IIR1 INP1 MUX", "DEC5", "DEC5 MUX"}, {"IIR1 INP1 MUX", "DEC6", "DEC6 MUX"}, {"IIR1 INP1 MUX", "DEC7", "DEC7 MUX"}, {"IIR1 INP1 MUX", "DEC8", "DEC8 MUX"}, {"IIR1 INP1 MUX", "DEC9", "DEC9 MUX"}, {"IIR1 INP1 MUX", "DEC10", "DEC10 MUX"}, {"MIC BIAS1 Internal1", NULL, "LDO_H"}, {"MIC BIAS1 Internal2", NULL, "LDO_H"}, {"MIC BIAS1 External", NULL, "LDO_H"}, {"MIC BIAS2 Internal1", NULL, "LDO_H"}, {"MIC BIAS2 Internal2", NULL, "LDO_H"}, {"MIC BIAS2 Internal3", NULL, "LDO_H"}, {"MIC BIAS2 External", NULL, "LDO_H"}, {"MIC BIAS3 Internal1", NULL, "LDO_H"}, {"MIC BIAS3 Internal2", NULL, "LDO_H"}, {"MIC BIAS3 External", NULL, "LDO_H"}, {"MIC BIAS4 External", NULL, "LDO_H"}, }; static const struct snd_soc_dapm_route tabla_1_x_lineout_2_to_4_map[] = { {"RX4 DSM MUX", "DSM_INV", "RX3 MIX1"}, {"RX4 DSM MUX", "CIC_OUT", "RX4 MIX1"}, {"LINEOUT2 DAC", NULL, "RX4 DSM MUX"}, {"LINEOUT3 DAC", NULL, "RX5 MIX1"}, {"LINEOUT3 DAC GROUND", "Switch", "RX3 MIX1"}, {"LINEOUT3 DAC", NULL, "LINEOUT3 DAC GROUND"}, {"RX6 DSM MUX", "DSM_INV", "RX5 MIX1"}, {"RX6 DSM MUX", "CIC_OUT", "RX6 MIX1"}, {"LINEOUT4 DAC", NULL, "RX6 DSM MUX"}, {"LINEOUT4 DAC GROUND", "Switch", "RX4 DSM MUX"}, {"LINEOUT4 DAC", NULL, "LINEOUT4 DAC GROUND"}, }; static const struct snd_soc_dapm_route tabla_2_x_lineout_2_to_4_map[] = { {"RX4 DSM MUX", "DSM_INV", "RX3 MIX1"}, {"RX4 DSM MUX", "CIC_OUT", "RX4 MIX1"}, {"LINEOUT3 DAC", NULL, "RX4 DSM MUX"}, {"LINEOUT2 DAC", NULL, "RX5 MIX1"}, {"RX6 DSM MUX", "DSM_INV", "RX5 MIX1"}, {"RX6 DSM MUX", "CIC_OUT", "RX6 MIX1"}, {"LINEOUT4 DAC", NULL, "RX6 DSM MUX"}, }; static int tabla_readable(struct snd_soc_codec *ssc, unsigned int reg) { int i; struct tabla *tabla_core = dev_get_drvdata(ssc->dev->parent); if (TABLA_IS_1_X(tabla_core->version)) { for (i = 0; i < ARRAY_SIZE(tabla_1_reg_readable); i++) { if (tabla_1_reg_readable[i] == reg) return 1; } } else { for (i = 0; i < ARRAY_SIZE(tabla_2_reg_readable); i++) { if (tabla_2_reg_readable[i] == reg) return 1; } } return tabla_reg_readable[reg]; } static int tabla_volatile(struct snd_soc_codec *ssc, unsigned int reg) { /* Registers lower than 0x100 are top level registers which can be * written by the Tabla core driver. */ if ((reg >= TABLA_A_CDC_MBHC_EN_CTL) || (reg < 0x100)) return 1; /* IIR Coeff registers are not cacheable */ if ((reg >= TABLA_A_CDC_IIR1_COEF_B1_CTL) && (reg <= TABLA_A_CDC_IIR2_COEF_B5_CTL)) return 1; return 0; } #define TABLA_FORMATS (SNDRV_PCM_FMTBIT_S16_LE) static int tabla_write(struct snd_soc_codec *codec, unsigned int reg, unsigned int value) { int ret; BUG_ON(reg > TABLA_MAX_REGISTER); if (!tabla_volatile(codec, reg)) { ret = snd_soc_cache_write(codec, reg, value); if (ret != 0) dev_err(codec->dev, "Cache write to %x failed: %d\n", reg, ret); } return tabla_reg_write(codec->control_data, reg, value); } static unsigned int tabla_read(struct snd_soc_codec *codec, unsigned int reg) { unsigned int val; int ret; BUG_ON(reg > TABLA_MAX_REGISTER); if (!tabla_volatile(codec, reg) && tabla_readable(codec, reg) && reg < codec->driver->reg_cache_size) { ret = snd_soc_cache_read(codec, reg, &val); if (ret >= 0) { return val; } else dev_err(codec->dev, "Cache read from %x failed: %d\n", reg, ret); } val = tabla_reg_read(codec->control_data, reg); return val; } static void tabla_codec_enable_audio_mode_bandgap(struct snd_soc_codec *codec) { snd_soc_write(codec, TABLA_A_BIAS_REF_CTL, 0x1C); snd_soc_update_bits(codec, TABLA_A_BIAS_CENTRAL_BG_CTL, 0x80, 0x80); snd_soc_update_bits(codec, TABLA_A_BIAS_CENTRAL_BG_CTL, 0x04, 0x04); snd_soc_update_bits(codec, TABLA_A_BIAS_CENTRAL_BG_CTL, 0x01, 0x01); usleep_range(1000, 1000); snd_soc_update_bits(codec, TABLA_A_BIAS_CENTRAL_BG_CTL, 0x80, 0x00); } static void tabla_codec_enable_bandgap(struct snd_soc_codec *codec, enum tabla_bandgap_type choice) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); /* TODO lock resources accessed by audio streams and threaded * interrupt handlers */ pr_debug("%s, choice is %d, current is %d\n", __func__, choice, tabla->bandgap_type); if (tabla->bandgap_type == choice) return; if ((tabla->bandgap_type == TABLA_BANDGAP_OFF) && (choice == TABLA_BANDGAP_AUDIO_MODE)) { tabla_codec_enable_audio_mode_bandgap(codec); } else if (choice == TABLA_BANDGAP_MBHC_MODE) { snd_soc_update_bits(codec, TABLA_A_BIAS_CENTRAL_BG_CTL, 0x2, 0x2); snd_soc_update_bits(codec, TABLA_A_BIAS_CENTRAL_BG_CTL, 0x80, 0x80); snd_soc_update_bits(codec, TABLA_A_BIAS_CENTRAL_BG_CTL, 0x4, 0x4); snd_soc_update_bits(codec, TABLA_A_BIAS_CENTRAL_BG_CTL, 0x01, 0x01); usleep_range(1000, 1000); snd_soc_update_bits(codec, TABLA_A_BIAS_CENTRAL_BG_CTL, 0x80, 0x00); } else if ((tabla->bandgap_type == TABLA_BANDGAP_MBHC_MODE) && (choice == TABLA_BANDGAP_AUDIO_MODE)) { snd_soc_write(codec, TABLA_A_BIAS_CENTRAL_BG_CTL, 0x00); usleep_range(100, 100); tabla_codec_enable_audio_mode_bandgap(codec); } else if (choice == TABLA_BANDGAP_OFF) { snd_soc_write(codec, TABLA_A_BIAS_CENTRAL_BG_CTL, 0x00); } else { pr_err("%s: Error, Invalid bandgap settings\n", __func__); } tabla->bandgap_type = choice; } static int tabla_codec_enable_config_mode(struct snd_soc_codec *codec, int enable) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); pr_debug("%s: enable = %d\n", __func__, enable); if (enable) { snd_soc_update_bits(codec, TABLA_A_CONFIG_MODE_FREQ, 0x10, 0); snd_soc_write(codec, TABLA_A_BIAS_CONFIG_MODE_BG_CTL, 0x17); usleep_range(5, 5); snd_soc_update_bits(codec, TABLA_A_CONFIG_MODE_FREQ, 0x80, 0x80); snd_soc_update_bits(codec, TABLA_A_CONFIG_MODE_TEST, 0x80, 0x80); usleep_range(10, 10); snd_soc_update_bits(codec, TABLA_A_CONFIG_MODE_TEST, 0x80, 0); usleep_range(20, 20); snd_soc_update_bits(codec, TABLA_A_CLK_BUFF_EN1, 0x08, 0x08); } else { snd_soc_update_bits(codec, TABLA_A_BIAS_CONFIG_MODE_BG_CTL, 0x1, 0); snd_soc_update_bits(codec, TABLA_A_CONFIG_MODE_FREQ, 0x80, 0); snd_soc_update_bits(codec, TABLA_A_CLK_BUFF_EN1, 0x08, 0x00); } tabla->config_mode_active = enable ? true : false; return 0; } static int tabla_codec_enable_clock_block(struct snd_soc_codec *codec, int config_mode) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); pr_debug("%s: config_mode = %d\n", __func__, config_mode); if (config_mode) { tabla_codec_enable_config_mode(codec, 1); snd_soc_write(codec, TABLA_A_CLK_BUFF_EN2, 0x00); snd_soc_write(codec, TABLA_A_CLK_BUFF_EN2, 0x02); snd_soc_write(codec, TABLA_A_CLK_BUFF_EN1, 0x0D); usleep_range(1000, 1000); } else snd_soc_update_bits(codec, TABLA_A_CLK_BUFF_EN1, 0x08, 0x00); if (!config_mode && tabla->mbhc_polling_active) { snd_soc_write(codec, TABLA_A_CLK_BUFF_EN2, 0x02); tabla_codec_enable_config_mode(codec, 0); } snd_soc_update_bits(codec, TABLA_A_CLK_BUFF_EN1, 0x05, 0x05); snd_soc_update_bits(codec, TABLA_A_CLK_BUFF_EN2, 0x02, 0x00); snd_soc_update_bits(codec, TABLA_A_CLK_BUFF_EN2, 0x04, 0x04); snd_soc_update_bits(codec, TABLA_A_CDC_CLK_MCLK_CTL, 0x01, 0x01); usleep_range(50, 50); tabla->clock_active = true; return 0; } static void tabla_codec_disable_clock_block(struct snd_soc_codec *codec) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); pr_debug("%s\n", __func__); snd_soc_update_bits(codec, TABLA_A_CLK_BUFF_EN2, 0x04, 0x00); ndelay(160); snd_soc_update_bits(codec, TABLA_A_CLK_BUFF_EN2, 0x02, 0x02); snd_soc_update_bits(codec, TABLA_A_CLK_BUFF_EN1, 0x05, 0x00); tabla->clock_active = false; } static int tabla_codec_mclk_index(const struct tabla_priv *tabla) { if (tabla->mclk_freq == TABLA_MCLK_RATE_12288KHZ) return 0; else if (tabla->mclk_freq == TABLA_MCLK_RATE_9600KHZ) return 1; else { BUG_ON(1); return -EINVAL; } } static void tabla_codec_calibrate_hs_polling(struct snd_soc_codec *codec) { u8 *n_ready, *n_cic; struct tabla_mbhc_btn_detect_cfg *btn_det; struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); btn_det = TABLA_MBHC_CAL_BTN_DET_PTR(tabla->calibration); snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B1_CTL, tabla->mbhc_data.v_ins_hu & 0xFF); snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B2_CTL, (tabla->mbhc_data.v_ins_hu >> 8) & 0xFF); snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B3_CTL, tabla->mbhc_data.v_b1_hu & 0xFF); snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B4_CTL, (tabla->mbhc_data.v_b1_hu >> 8) & 0xFF); snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B5_CTL, tabla->mbhc_data.v_b1_h & 0xFF); snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B6_CTL, (tabla->mbhc_data.v_b1_h >> 8) & 0xFF); snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B9_CTL, tabla->mbhc_data.v_brh & 0xFF); snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B10_CTL, (tabla->mbhc_data.v_brh >> 8) & 0xFF); snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B11_CTL, tabla->mbhc_data.v_brl & 0xFF); snd_soc_write(codec, TABLA_A_CDC_MBHC_VOLT_B12_CTL, (tabla->mbhc_data.v_brl >> 8) & 0xFF); n_ready = tabla_mbhc_cal_btn_det_mp(btn_det, TABLA_BTN_DET_N_READY); snd_soc_write(codec, TABLA_A_CDC_MBHC_TIMER_B1_CTL, n_ready[tabla_codec_mclk_index(tabla)]); snd_soc_write(codec, TABLA_A_CDC_MBHC_TIMER_B2_CTL, tabla->mbhc_data.npoll); snd_soc_write(codec, TABLA_A_CDC_MBHC_TIMER_B3_CTL, tabla->mbhc_data.nbounce_wait); n_cic = tabla_mbhc_cal_btn_det_mp(btn_det, TABLA_BTN_DET_N_CIC); snd_soc_write(codec, TABLA_A_CDC_MBHC_TIMER_B6_CTL, n_cic[tabla_codec_mclk_index(tabla)]); } static int tabla_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { pr_debug("%s(): substream = %s stream = %d\n" , __func__, substream->name, substream->stream); return 0; } static void tabla_shutdown(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { pr_debug("%s(): substream = %s stream = %d\n" , __func__, substream->name, substream->stream); } int tabla_mclk_enable(struct snd_soc_codec *codec, int mclk_enable) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); pr_debug("%s() mclk_enable = %u\n", __func__, mclk_enable); if (mclk_enable) { tabla->mclk_enabled = true; if (tabla->mbhc_polling_active && (tabla->mclk_enabled)) { tabla_codec_pause_hs_polling(codec); tabla_codec_enable_bandgap(codec, TABLA_BANDGAP_AUDIO_MODE); tabla_codec_enable_clock_block(codec, 0); tabla_codec_calibrate_hs_polling(codec); tabla_codec_start_hs_polling(codec); } else { tabla_codec_enable_bandgap(codec, TABLA_BANDGAP_AUDIO_MODE); tabla_codec_enable_clock_block(codec, 0); } } else { if (!tabla->mclk_enabled) { pr_err("Error, MCLK already diabled\n"); return -EINVAL; } tabla->mclk_enabled = false; if (tabla->mbhc_polling_active) { if (!tabla->mclk_enabled) { tabla_codec_pause_hs_polling(codec); tabla_codec_enable_bandgap(codec, TABLA_BANDGAP_MBHC_MODE); tabla_enable_rx_bias(codec, 1); tabla_codec_enable_clock_block(codec, 1); tabla_codec_calibrate_hs_polling(codec); tabla_codec_start_hs_polling(codec); } snd_soc_update_bits(codec, TABLA_A_CLK_BUFF_EN1, 0x05, 0x01); } else { tabla_codec_disable_clock_block(codec); tabla_codec_enable_bandgap(codec, TABLA_BANDGAP_OFF); } } return 0; } static int tabla_set_dai_sysclk(struct snd_soc_dai *dai, int clk_id, unsigned int freq, int dir) { pr_debug("%s\n", __func__); return 0; } static int tabla_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt) { u8 val = 0; struct tabla_priv *tabla = snd_soc_codec_get_drvdata(dai->codec); pr_debug("%s\n", __func__); switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBS_CFS: /* CPU is master */ if (tabla->intf_type == TABLA_INTERFACE_TYPE_I2C) { if (dai->id == TABLA_TX_DAI_ID) snd_soc_update_bits(dai->codec, TABLA_A_CDC_CLK_TX_I2S_CTL, TABLA_I2S_MASTER_MODE_MASK, 0); else if (dai->id == TABLA_RX_DAI_ID) snd_soc_update_bits(dai->codec, TABLA_A_CDC_CLK_RX_I2S_CTL, TABLA_I2S_MASTER_MODE_MASK, 0); } break; case SND_SOC_DAIFMT_CBM_CFM: /* CPU is slave */ if (tabla->intf_type == TABLA_INTERFACE_TYPE_I2C) { val = TABLA_I2S_MASTER_MODE_MASK; if (dai->id == TABLA_TX_DAI_ID) snd_soc_update_bits(dai->codec, TABLA_A_CDC_CLK_TX_I2S_CTL, val, val); else if (dai->id == TABLA_RX_DAI_ID) snd_soc_update_bits(dai->codec, TABLA_A_CDC_CLK_RX_I2S_CTL, val, val); } break; default: return -EINVAL; } return 0; } static int tabla_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_soc_codec *codec = dai->codec; struct tabla_priv *tabla = snd_soc_codec_get_drvdata(dai->codec); u8 path, shift; u16 tx_fs_reg, rx_fs_reg; u8 tx_fs_rate, rx_fs_rate, rx_state, tx_state; pr_debug("%s: DAI-ID %x\n", __func__, dai->id); switch (params_rate(params)) { case 8000: tx_fs_rate = 0x00; rx_fs_rate = 0x00; break; case 16000: tx_fs_rate = 0x01; rx_fs_rate = 0x20; break; case 32000: tx_fs_rate = 0x02; rx_fs_rate = 0x40; break; case 48000: tx_fs_rate = 0x03; rx_fs_rate = 0x60; break; default: pr_err("%s: Invalid sampling rate %d\n", __func__, params_rate(params)); return -EINVAL; } /** * If current dai is a tx dai, set sample rate to * all the txfe paths that are currently not active */ if (dai->id == TABLA_TX_DAI_ID) { tx_state = snd_soc_read(codec, TABLA_A_CDC_CLK_TX_CLK_EN_B1_CTL); for (path = 1, shift = 0; path <= NUM_DECIMATORS; path++, shift++) { if (path == BITS_PER_REG + 1) { shift = 0; tx_state = snd_soc_read(codec, TABLA_A_CDC_CLK_TX_CLK_EN_B2_CTL); } if (!(tx_state & (1 << shift))) { tx_fs_reg = TABLA_A_CDC_TX1_CLK_FS_CTL + (BITS_PER_REG*(path-1)); snd_soc_update_bits(codec, tx_fs_reg, 0x03, tx_fs_rate); } } if (tabla->intf_type == TABLA_INTERFACE_TYPE_I2C) { switch (params_format(params)) { case SNDRV_PCM_FORMAT_S16_LE: snd_soc_update_bits(codec, TABLA_A_CDC_CLK_TX_I2S_CTL, 0x20, 0x20); break; case SNDRV_PCM_FORMAT_S32_LE: snd_soc_update_bits(codec, TABLA_A_CDC_CLK_TX_I2S_CTL, 0x20, 0x00); break; default: pr_err("invalid format\n"); break; } snd_soc_update_bits(codec, TABLA_A_CDC_CLK_TX_I2S_CTL, 0x03, tx_fs_rate); } } /** * TODO: Need to handle case where same RX chain takes 2 or more inputs * with varying sample rates */ /** * If current dai is a rx dai, set sample rate to * all the rx paths that are currently not active */ if (dai->id == TABLA_RX_DAI_ID) { rx_state = snd_soc_read(codec, TABLA_A_CDC_CLK_RX_B1_CTL); for (path = 1, shift = 0; path <= NUM_INTERPOLATORS; path++, shift++) { if (!(rx_state & (1 << shift))) { rx_fs_reg = TABLA_A_CDC_RX1_B5_CTL + (BITS_PER_REG*(path-1)); snd_soc_update_bits(codec, rx_fs_reg, 0xE0, rx_fs_rate); } } if (tabla->intf_type == TABLA_INTERFACE_TYPE_I2C) { switch (params_format(params)) { case SNDRV_PCM_FORMAT_S16_LE: snd_soc_update_bits(codec, TABLA_A_CDC_CLK_RX_I2S_CTL, 0x20, 0x20); break; case SNDRV_PCM_FORMAT_S32_LE: snd_soc_update_bits(codec, TABLA_A_CDC_CLK_RX_I2S_CTL, 0x20, 0x00); break; default: pr_err("invalid format\n"); break; } snd_soc_update_bits(codec, TABLA_A_CDC_CLK_RX_I2S_CTL, 0x03, (rx_fs_rate >> 0x05)); } } return 0; } static struct snd_soc_dai_ops tabla_dai_ops = { .startup = tabla_startup, .shutdown = tabla_shutdown, .hw_params = tabla_hw_params, .set_sysclk = tabla_set_dai_sysclk, .set_fmt = tabla_set_dai_fmt, }; static struct snd_soc_dai_driver tabla_dai[] = { { .name = "tabla_rx1", .id = 1, .playback = { .stream_name = "AIF1 Playback", .rates = WCD9310_RATES, .formats = TABLA_FORMATS, .rate_max = 48000, .rate_min = 8000, .channels_min = 1, .channels_max = 4, }, .ops = &tabla_dai_ops, }, { .name = "tabla_tx1", .id = 2, .capture = { .stream_name = "AIF1 Capture", .rates = WCD9310_RATES, .formats = TABLA_FORMATS, .rate_max = 48000, .rate_min = 8000, .channels_min = 1, .channels_max = 2, }, .ops = &tabla_dai_ops, }, }; static struct snd_soc_dai_driver tabla_i2s_dai[] = { { .name = "tabla_i2s_rx1", .id = 1, .playback = { .stream_name = "AIF1 Playback", .rates = WCD9310_RATES, .formats = TABLA_FORMATS, .rate_max = 48000, .rate_min = 8000, .channels_min = 1, .channels_max = 4, }, .ops = &tabla_dai_ops, }, { .name = "tabla_i2s_tx1", .id = 2, .capture = { .stream_name = "AIF1 Capture", .rates = WCD9310_RATES, .formats = TABLA_FORMATS, .rate_max = 48000, .rate_min = 8000, .channels_min = 1, .channels_max = 4, }, .ops = &tabla_dai_ops, }, }; static short tabla_codec_read_sta_result(struct snd_soc_codec *codec) { u8 bias_msb, bias_lsb; short bias_value; bias_msb = snd_soc_read(codec, TABLA_A_CDC_MBHC_B3_STATUS); bias_lsb = snd_soc_read(codec, TABLA_A_CDC_MBHC_B2_STATUS); bias_value = (bias_msb << 8) | bias_lsb; return bias_value; } static short tabla_codec_read_dce_result(struct snd_soc_codec *codec) { u8 bias_msb, bias_lsb; short bias_value; bias_msb = snd_soc_read(codec, TABLA_A_CDC_MBHC_B5_STATUS); bias_lsb = snd_soc_read(codec, TABLA_A_CDC_MBHC_B4_STATUS); bias_value = (bias_msb << 8) | bias_lsb; return bias_value; } static short tabla_codec_sta_dce(struct snd_soc_codec *codec, int dce) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); short bias_value; /* Turn on the override */ snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B1_CTL, 0x4, 0x4); if (dce) { snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x8, 0x8); snd_soc_write(codec, TABLA_A_CDC_MBHC_EN_CTL, 0x4); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x8, 0x0); usleep_range(tabla->mbhc_data.t_sta_dce, tabla->mbhc_data.t_sta_dce); snd_soc_write(codec, TABLA_A_CDC_MBHC_EN_CTL, 0x4); usleep_range(tabla->mbhc_data.t_dce, tabla->mbhc_data.t_dce); bias_value = tabla_codec_read_dce_result(codec); } else { snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x8, 0x8); snd_soc_write(codec, TABLA_A_CDC_MBHC_EN_CTL, 0x2); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x8, 0x0); usleep_range(tabla->mbhc_data.t_sta_dce, tabla->mbhc_data.t_sta_dce); snd_soc_write(codec, TABLA_A_CDC_MBHC_EN_CTL, 0x2); usleep_range(tabla->mbhc_data.t_sta, tabla->mbhc_data.t_sta); bias_value = tabla_codec_read_sta_result(codec); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x8, 0x8); snd_soc_write(codec, TABLA_A_CDC_MBHC_EN_CTL, 0x0); } /* Turn off the override after measuring mic voltage */ snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B1_CTL, 0x04, 0x00); return bias_value; } static short tabla_codec_setup_hs_polling(struct snd_soc_codec *codec) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); short bias_value; u8 cfilt_mode; if (!tabla->calibration) { pr_err("Error, no tabla calibration\n"); return -ENODEV; } tabla->mbhc_polling_active = true; if (!tabla->mclk_enabled) { tabla_codec_enable_bandgap(codec, TABLA_BANDGAP_MBHC_MODE); tabla_enable_rx_bias(codec, 1); tabla_codec_enable_clock_block(codec, 1); } snd_soc_update_bits(codec, TABLA_A_CLK_BUFF_EN1, 0x05, 0x01); snd_soc_update_bits(codec, TABLA_A_TX_COM_BIAS, 0xE0, 0xE0); /* Make sure CFILT is in fast mode, save current mode */ cfilt_mode = snd_soc_read(codec, tabla->mbhc_bias_regs.cfilt_ctl); snd_soc_update_bits(codec, tabla->mbhc_bias_regs.cfilt_ctl, 0x70, 0x00); snd_soc_update_bits(codec, tabla->mbhc_bias_regs.ctl_reg, 0x1F, 0x16); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x2, 0x2); snd_soc_write(codec, TABLA_A_MBHC_SCALING_MUX_1, 0x84); snd_soc_update_bits(codec, TABLA_A_TX_7_MBHC_EN, 0x80, 0x80); snd_soc_update_bits(codec, TABLA_A_TX_7_MBHC_EN, 0x1F, 0x1C); snd_soc_update_bits(codec, TABLA_A_TX_7_MBHC_TEST_CTL, 0x40, 0x40); snd_soc_update_bits(codec, TABLA_A_TX_7_MBHC_EN, 0x80, 0x00); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x8, 0x8); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x8, 0x00); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B1_CTL, 0x2, 0x2); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x8, 0x8); tabla_codec_calibrate_hs_polling(codec); bias_value = tabla_codec_sta_dce(codec, 0); snd_soc_update_bits(codec, tabla->mbhc_bias_regs.cfilt_ctl, 0x40, cfilt_mode); snd_soc_update_bits(codec, TABLA_A_MBHC_HPH, 0x13, 0x00); return bias_value; } static int tabla_codec_enable_hs_detect(struct snd_soc_codec *codec, int insertion) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); int central_bias_enabled = 0; const struct tabla_mbhc_general_cfg *generic = TABLA_MBHC_CAL_GENERAL_PTR(tabla->calibration); const struct tabla_mbhc_plug_detect_cfg *plug_det = TABLA_MBHC_CAL_PLUG_DET_PTR(tabla->calibration); u8 wg_time; if (!tabla->calibration) { pr_err("Error, no tabla calibration\n"); return -EINVAL; } snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_INT_CTL, 0x1, 0); if (insertion) { /* Make sure mic bias and Mic line schmitt trigger * are turned OFF */ snd_soc_update_bits(codec, tabla->mbhc_bias_regs.ctl_reg, 0x81, 0x01); snd_soc_update_bits(codec, tabla->mbhc_bias_regs.mbhc_reg, 0x90, 0x00); wg_time = snd_soc_read(codec, TABLA_A_RX_HPH_CNP_WG_TIME) ; wg_time += 1; /* Enable HPH Schmitt Trigger */ snd_soc_update_bits(codec, TABLA_A_MBHC_HPH, 0x11, 0x11); snd_soc_update_bits(codec, TABLA_A_MBHC_HPH, 0x0C, plug_det->hph_current << 2); /* Turn off HPH PAs and DAC's during insertion detection to * avoid false insertion interrupts */ if (tabla->mbhc_micbias_switched) tabla_codec_switch_micbias(codec, 0); snd_soc_update_bits(codec, TABLA_A_RX_HPH_CNP_EN, 0x30, 0x00); snd_soc_update_bits(codec, TABLA_A_RX_HPH_L_DAC_CTL, 0xC0, 0x00); snd_soc_update_bits(codec, TABLA_A_RX_HPH_R_DAC_CTL, 0xC0, 0x00); usleep_range(wg_time * 1000, wg_time * 1000); /* setup for insetion detection */ snd_soc_update_bits(codec, TABLA_A_MBHC_HPH, 0x02, 0x02); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_INT_CTL, 0x2, 0); } else { /* Make sure the HPH schmitt trigger is OFF */ snd_soc_update_bits(codec, TABLA_A_MBHC_HPH, 0x12, 0x00); /* enable the mic line schmitt trigger */ snd_soc_update_bits(codec, tabla->mbhc_bias_regs.mbhc_reg, 0x60, plug_det->mic_current << 5); snd_soc_update_bits(codec, tabla->mbhc_bias_regs.mbhc_reg, 0x80, 0x80); usleep_range(plug_det->t_mic_pid, plug_det->t_mic_pid); snd_soc_update_bits(codec, tabla->mbhc_bias_regs.mbhc_reg, 0x10, 0x10); /* Setup for low power removal detection */ snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_INT_CTL, 0x2, 0x2); } if (snd_soc_read(codec, TABLA_A_CDC_MBHC_B1_CTL) & 0x4) { if (!(tabla->clock_active)) { tabla_codec_enable_config_mode(codec, 1); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B1_CTL, 0x06, 0); usleep_range(generic->t_shutdown_plug_rem, generic->t_shutdown_plug_rem); tabla_codec_enable_config_mode(codec, 0); } else snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B1_CTL, 0x06, 0); } snd_soc_update_bits(codec, tabla->mbhc_bias_regs.int_rbias, 0x80, 0); /* If central bandgap disabled */ if (!(snd_soc_read(codec, TABLA_A_PIN_CTL_OE1) & 1)) { snd_soc_update_bits(codec, TABLA_A_PIN_CTL_OE1, 0x3, 0x3); usleep_range(generic->t_bg_fast_settle, generic->t_bg_fast_settle); central_bias_enabled = 1; } /* If LDO_H disabled */ if (snd_soc_read(codec, TABLA_A_PIN_CTL_OE0) & 0x80) { snd_soc_update_bits(codec, TABLA_A_PIN_CTL_OE0, 0x10, 0); snd_soc_update_bits(codec, TABLA_A_PIN_CTL_OE0, 0x80, 0x80); usleep_range(generic->t_ldoh, generic->t_ldoh); snd_soc_update_bits(codec, TABLA_A_PIN_CTL_OE0, 0x80, 0); if (central_bias_enabled) snd_soc_update_bits(codec, TABLA_A_PIN_CTL_OE1, 0x1, 0); } snd_soc_update_bits(codec, tabla->reg_addr.micb_4_mbhc, 0x3, tabla->micbias); tabla_enable_irq(codec->control_data, TABLA_IRQ_MBHC_INSERTION); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_INT_CTL, 0x1, 0x1); return 0; } static u16 tabla_codec_v_sta_dce(struct snd_soc_codec *codec, bool dce, s16 vin_mv) { short diff, zero; struct tabla_priv *tabla; u32 mb_mv, in; tabla = snd_soc_codec_get_drvdata(codec); mb_mv = tabla->mbhc_data.micb_mv; if (mb_mv == 0) { pr_err("%s: Mic Bias voltage is set to zero\n", __func__); return -EINVAL; } if (dce) { diff = tabla->mbhc_data.dce_mb - tabla->mbhc_data.dce_z; zero = tabla->mbhc_data.dce_z; } else { diff = tabla->mbhc_data.sta_mb - tabla->mbhc_data.sta_z; zero = tabla->mbhc_data.sta_z; } in = (u32) diff * vin_mv; return (u16) (in / mb_mv) + zero; } static s32 tabla_codec_sta_dce_v(struct snd_soc_codec *codec, s8 dce, u16 bias_value) { struct tabla_priv *tabla; s32 mv; tabla = snd_soc_codec_get_drvdata(codec); if (dce) { mv = ((s32)bias_value - (s32)tabla->mbhc_data.dce_z) * (s32)tabla->mbhc_data.micb_mv / (s32)(tabla->mbhc_data.dce_mb - tabla->mbhc_data.dce_z); } else { mv = ((s32)bias_value - (s32)tabla->mbhc_data.sta_z) * (s32)tabla->mbhc_data.micb_mv / (s32)(tabla->mbhc_data.sta_mb - tabla->mbhc_data.sta_z); } return mv; } static void btn0_lpress_fn(struct work_struct *work) { struct delayed_work *delayed_work; struct tabla_priv *tabla; short bias_value; int dce_mv, sta_mv; struct tabla *core; pr_debug("%s:\n", __func__); delayed_work = to_delayed_work(work); tabla = container_of(delayed_work, struct tabla_priv, btn0_dwork); core = dev_get_drvdata(tabla->codec->dev->parent); if (tabla) { if (tabla->button_jack) { bias_value = tabla_codec_read_sta_result(tabla->codec); sta_mv = tabla_codec_sta_dce_v(tabla->codec, 0, bias_value); bias_value = tabla_codec_read_dce_result(tabla->codec); dce_mv = tabla_codec_sta_dce_v(tabla->codec, 1, bias_value); pr_debug("%s: Reporting long button press event" " STA: %d, DCE: %d\n", __func__, sta_mv, dce_mv); tabla_snd_soc_jack_report(tabla, tabla->button_jack, SND_JACK_BTN_0, SND_JACK_BTN_0); } } else { pr_err("%s: Bad tabla private data\n", __func__); } tabla_unlock_sleep(core); } void tabla_mbhc_cal(struct snd_soc_codec *codec) { struct tabla_priv *tabla; struct tabla_mbhc_btn_detect_cfg *btn_det; u8 cfilt_mode, bg_mode; u8 ncic, nmeas, navg; u32 mclk_rate; u32 dce_wait, sta_wait; u8 *n_cic; tabla = snd_soc_codec_get_drvdata(codec); /* First compute the DCE / STA wait times * depending on tunable parameters. * The value is computed in microseconds */ btn_det = TABLA_MBHC_CAL_BTN_DET_PTR(tabla->calibration); n_cic = tabla_mbhc_cal_btn_det_mp(btn_det, TABLA_BTN_DET_N_CIC); ncic = n_cic[tabla_codec_mclk_index(tabla)]; nmeas = TABLA_MBHC_CAL_BTN_DET_PTR(tabla->calibration)->n_meas; navg = TABLA_MBHC_CAL_GENERAL_PTR(tabla->calibration)->mbhc_navg; mclk_rate = tabla->mclk_freq; dce_wait = (1000 * 512 * ncic * (nmeas + 1)) / (mclk_rate / 1000); sta_wait = (1000 * 128 * (navg + 1)) / (mclk_rate / 1000); tabla->mbhc_data.t_dce = dce_wait; tabla->mbhc_data.t_sta = sta_wait; /* LDOH and CFILT are already configured during pdata handling. * Only need to make sure CFILT and bandgap are in Fast mode. * Need to restore defaults once calculation is done. */ cfilt_mode = snd_soc_read(codec, tabla->mbhc_bias_regs.cfilt_ctl); snd_soc_update_bits(codec, tabla->mbhc_bias_regs.cfilt_ctl, 0x40, 0x00); bg_mode = snd_soc_update_bits(codec, TABLA_A_BIAS_CENTRAL_BG_CTL, 0x02, 0x02); /* Micbias, CFILT, LDOH, MBHC MUX mode settings * to perform ADC calibration */ snd_soc_update_bits(codec, tabla->mbhc_bias_regs.ctl_reg, 0x60, tabla->micbias << 5); snd_soc_update_bits(codec, tabla->mbhc_bias_regs.ctl_reg, 0x01, 0x00); snd_soc_update_bits(codec, TABLA_A_LDO_H_MODE_1, 0x60, 0x60); snd_soc_write(codec, TABLA_A_TX_7_MBHC_TEST_CTL, 0x78); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B1_CTL, 0x04, 0x04); /* DCE measurement for 0 volts */ snd_soc_write(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x0A); snd_soc_write(codec, TABLA_A_CDC_MBHC_EN_CTL, 0x04); snd_soc_write(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x02); snd_soc_write(codec, TABLA_A_MBHC_SCALING_MUX_1, 0x81); usleep_range(100, 100); snd_soc_write(codec, TABLA_A_CDC_MBHC_EN_CTL, 0x04); usleep_range(tabla->mbhc_data.t_dce, tabla->mbhc_data.t_dce); tabla->mbhc_data.dce_z = tabla_codec_read_dce_result(codec); /* DCE measurment for MB voltage */ snd_soc_write(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x0A); snd_soc_write(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x02); snd_soc_write(codec, TABLA_A_MBHC_SCALING_MUX_1, 0x82); usleep_range(100, 100); snd_soc_write(codec, TABLA_A_CDC_MBHC_EN_CTL, 0x04); usleep_range(tabla->mbhc_data.t_dce, tabla->mbhc_data.t_dce); tabla->mbhc_data.dce_mb = tabla_codec_read_dce_result(codec); /* Sta measuremnt for 0 volts */ snd_soc_write(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x0A); snd_soc_write(codec, TABLA_A_CDC_MBHC_EN_CTL, 0x02); snd_soc_write(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x02); snd_soc_write(codec, TABLA_A_MBHC_SCALING_MUX_1, 0x81); usleep_range(100, 100); snd_soc_write(codec, TABLA_A_CDC_MBHC_EN_CTL, 0x02); usleep_range(tabla->mbhc_data.t_sta, tabla->mbhc_data.t_sta); tabla->mbhc_data.sta_z = tabla_codec_read_sta_result(codec); /* STA Measurement for MB Voltage */ snd_soc_write(codec, TABLA_A_MBHC_SCALING_MUX_1, 0x82); usleep_range(100, 100); snd_soc_write(codec, TABLA_A_CDC_MBHC_EN_CTL, 0x02); usleep_range(tabla->mbhc_data.t_sta, tabla->mbhc_data.t_sta); tabla->mbhc_data.sta_mb = tabla_codec_read_sta_result(codec); /* Restore default settings. */ snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B1_CTL, 0x04, 0x00); snd_soc_update_bits(codec, tabla->mbhc_bias_regs.cfilt_ctl, 0x40, cfilt_mode); snd_soc_update_bits(codec, TABLA_A_BIAS_CENTRAL_BG_CTL, 0x02, bg_mode); snd_soc_write(codec, TABLA_A_MBHC_SCALING_MUX_1, 0x84); usleep_range(100, 100); } void *tabla_mbhc_cal_btn_det_mp(const struct tabla_mbhc_btn_detect_cfg* btn_det, const enum tabla_mbhc_btn_det_mem mem) { void *ret = &btn_det->_v_btn_low; switch (mem) { case TABLA_BTN_DET_GAIN: ret += sizeof(btn_det->_n_cic); case TABLA_BTN_DET_N_CIC: ret += sizeof(btn_det->_n_ready); case TABLA_BTN_DET_N_READY: ret += sizeof(btn_det->_v_btn_high[0]) * btn_det->num_btn; case TABLA_BTN_DET_V_BTN_HIGH: ret += sizeof(btn_det->_v_btn_low[0]) * btn_det->num_btn; case TABLA_BTN_DET_V_BTN_LOW: /* do nothing */ break; default: ret = NULL; } return ret; } static void tabla_mbhc_calc_thres(struct snd_soc_codec *codec) { struct tabla_priv *tabla; s16 btn_mv = 0, btn_delta_mv; struct tabla_mbhc_btn_detect_cfg *btn_det; struct tabla_mbhc_plug_type_cfg *plug_type; u16 *btn_high; u8 *n_ready; int i; tabla = snd_soc_codec_get_drvdata(codec); btn_det = TABLA_MBHC_CAL_BTN_DET_PTR(tabla->calibration); plug_type = TABLA_MBHC_CAL_PLUG_TYPE_PTR(tabla->calibration); n_ready = tabla_mbhc_cal_btn_det_mp(btn_det, TABLA_BTN_DET_N_READY); if (tabla->mclk_freq == TABLA_MCLK_RATE_12288KHZ) { tabla->mbhc_data.npoll = 9; tabla->mbhc_data.nbounce_wait = 30; } else if (tabla->mclk_freq == TABLA_MCLK_RATE_9600KHZ) { tabla->mbhc_data.npoll = 7; tabla->mbhc_data.nbounce_wait = 23; } tabla->mbhc_data.t_sta_dce = ((1000 * 256) / (tabla->mclk_freq / 1000) * n_ready[tabla_codec_mclk_index(tabla)]) + 10; tabla->mbhc_data.v_ins_hu = tabla_codec_v_sta_dce(codec, STA, plug_type->v_hs_max); tabla->mbhc_data.v_ins_h = tabla_codec_v_sta_dce(codec, DCE, plug_type->v_hs_max); btn_high = tabla_mbhc_cal_btn_det_mp(btn_det, TABLA_BTN_DET_V_BTN_HIGH); for (i = 0; i < btn_det->num_btn; i++) btn_mv = btn_high[i] > btn_mv ? btn_high[i] : btn_mv; tabla->mbhc_data.v_b1_h = tabla_codec_v_sta_dce(codec, DCE, btn_mv); btn_delta_mv = btn_mv + btn_det->v_btn_press_delta_sta; tabla->mbhc_data.v_b1_hu = tabla_codec_v_sta_dce(codec, STA, btn_delta_mv); btn_delta_mv = btn_mv + btn_det->v_btn_press_delta_cic; tabla->mbhc_data.v_b1_huc = tabla_codec_v_sta_dce(codec, DCE, btn_delta_mv); tabla->mbhc_data.v_brh = tabla->mbhc_data.v_b1_h; tabla->mbhc_data.v_brl = 0xFA55; tabla->mbhc_data.v_no_mic = tabla_codec_v_sta_dce(codec, STA, plug_type->v_no_mic); } void tabla_mbhc_init(struct snd_soc_codec *codec) { struct tabla_priv *tabla; struct tabla_mbhc_general_cfg *generic; struct tabla_mbhc_btn_detect_cfg *btn_det; int n; u8 tabla_ver; u8 *n_cic, *gain; tabla = snd_soc_codec_get_drvdata(codec); generic = TABLA_MBHC_CAL_GENERAL_PTR(tabla->calibration); btn_det = TABLA_MBHC_CAL_BTN_DET_PTR(tabla->calibration); tabla_ver = snd_soc_read(codec, TABLA_A_CHIP_VERSION); tabla_ver &= 0x1F; for (n = 0; n < 8; n++) { if ((tabla_ver != TABLA_VERSION_1_0 && tabla_ver != TABLA_VERSION_1_1) || n != 7) { snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_FEATURE_B1_CFG, 0x07, n); snd_soc_write(codec, TABLA_A_CDC_MBHC_FEATURE_B2_CFG, btn_det->c[n]); } } snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B2_CTL, 0x07, btn_det->nc); n_cic = tabla_mbhc_cal_btn_det_mp(btn_det, TABLA_BTN_DET_N_CIC); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_TIMER_B6_CTL, 0xFF, n_cic[tabla_codec_mclk_index(tabla)]); gain = tabla_mbhc_cal_btn_det_mp(btn_det, TABLA_BTN_DET_GAIN); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B2_CTL, 0x78, gain[tabla_codec_mclk_index(tabla)] << 3); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_TIMER_B4_CTL, 0x70, generic->mbhc_nsa << 4); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_TIMER_B4_CTL, 0x0F, btn_det->n_meas); snd_soc_write(codec, TABLA_A_CDC_MBHC_TIMER_B5_CTL, generic->mbhc_navg); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B1_CTL, 0x80, 0x80); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B1_CTL, 0x78, btn_det->mbhc_nsc << 3); snd_soc_update_bits(codec, tabla->reg_addr.micb_4_mbhc, 0x03, TABLA_MICBIAS2); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B1_CTL, 0x02, 0x02); } static bool tabla_mbhc_fw_validate(const struct firmware *fw) { u32 cfg_offset; struct tabla_mbhc_imped_detect_cfg *imped_cfg; struct tabla_mbhc_btn_detect_cfg *btn_cfg; if (fw->size < TABLA_MBHC_CAL_MIN_SIZE) return false; /* previous check guarantees that there is enough fw data up * to num_btn */ btn_cfg = TABLA_MBHC_CAL_BTN_DET_PTR(fw->data); cfg_offset = (u32) ((void *) btn_cfg - (void *) fw->data); if (fw->size < (cfg_offset + TABLA_MBHC_CAL_BTN_SZ(btn_cfg))) return false; /* previous check guarantees that there is enough fw data up * to start of impedance detection configuration */ imped_cfg = TABLA_MBHC_CAL_IMPED_DET_PTR(fw->data); cfg_offset = (u32) ((void *) imped_cfg - (void *) fw->data); if (fw->size < (cfg_offset + TABLA_MBHC_CAL_IMPED_MIN_SZ)) return false; if (fw->size < (cfg_offset + TABLA_MBHC_CAL_IMPED_SZ(imped_cfg))) return false; return true; } static void mbhc_fw_read(struct work_struct *work) { struct delayed_work *dwork; struct tabla_priv *tabla; struct snd_soc_codec *codec; const struct firmware *fw; int ret = -1, retry = 0, rc; dwork = to_delayed_work(work); tabla = container_of(dwork, struct tabla_priv, mbhc_firmware_dwork); codec = tabla->codec; while (retry < MBHC_FW_READ_ATTEMPTS) { retry++; pr_info("%s:Attempt %d to request MBHC firmware\n", __func__, retry); ret = request_firmware(&fw, "wcd9310/wcd9310_mbhc.bin", codec->dev); if (ret != 0) { usleep_range(MBHC_FW_READ_TIMEOUT, MBHC_FW_READ_TIMEOUT); } else { pr_info("%s: MBHC Firmware read succesful\n", __func__); break; } } if (ret != 0) { pr_err("%s: Cannot load MBHC firmware use default cal\n", __func__); } else if (tabla_mbhc_fw_validate(fw) == false) { pr_err("%s: Invalid MBHC cal data size use default cal\n", __func__); release_firmware(fw); } else { tabla->calibration = (void *)fw->data; tabla->mbhc_fw = fw; } tabla->mclk_cb(codec, 1); tabla_mbhc_init(codec); tabla_mbhc_cal(codec); tabla_mbhc_calc_thres(codec); tabla->mclk_cb(codec, 0); tabla_codec_calibrate_hs_polling(codec); rc = tabla_codec_enable_hs_detect(codec, 1); if (IS_ERR_VALUE(rc)) pr_err("%s: Failed to setup MBHC detection\n", __func__); } int tabla_hs_detect(struct snd_soc_codec *codec, struct snd_soc_jack *headset_jack, struct snd_soc_jack *button_jack, void *calibration, enum tabla_micbias_num micbias, int (*mclk_cb_fn) (struct snd_soc_codec*, int), int read_fw_bin, u32 mclk_rate) { struct tabla_priv *tabla; int rc = 0; if (!codec || !calibration) { pr_err("Error: no codec or calibration\n"); return -EINVAL; } if (mclk_rate != TABLA_MCLK_RATE_12288KHZ) { if (mclk_rate == TABLA_MCLK_RATE_9600KHZ) pr_err("Error: clock rate %dHz is not yet supported\n", mclk_rate); else pr_err("Error: unsupported clock rate %d\n", mclk_rate); return -EINVAL; } tabla = snd_soc_codec_get_drvdata(codec); tabla->headset_jack = headset_jack; tabla->button_jack = button_jack; tabla->micbias = micbias; tabla->calibration = calibration; tabla->mclk_cb = mclk_cb_fn; tabla->mclk_freq = mclk_rate; tabla_get_mbhc_micbias_regs(codec, &tabla->mbhc_bias_regs); /* Put CFILT in fast mode by default */ snd_soc_update_bits(codec, tabla->mbhc_bias_regs.cfilt_ctl, 0x40, TABLA_CFILT_FAST_MODE); INIT_DELAYED_WORK(&tabla->mbhc_firmware_dwork, mbhc_fw_read); INIT_DELAYED_WORK(&tabla->btn0_dwork, btn0_lpress_fn); INIT_WORK(&tabla->hphlocp_work, hphlocp_off_report); INIT_WORK(&tabla->hphrocp_work, hphrocp_off_report); if (!read_fw_bin) { tabla->mclk_cb(codec, 1); tabla_mbhc_init(codec); tabla_mbhc_cal(codec); tabla_mbhc_calc_thres(codec); tabla->mclk_cb(codec, 0); tabla_codec_calibrate_hs_polling(codec); rc = tabla_codec_enable_hs_detect(codec, 1); } else { schedule_delayed_work(&tabla->mbhc_firmware_dwork, usecs_to_jiffies(MBHC_FW_READ_TIMEOUT)); } if (!IS_ERR_VALUE(rc)) { snd_soc_update_bits(codec, TABLA_A_RX_HPH_OCP_CTL, 0x10, 0x10); tabla_enable_irq(codec->control_data, TABLA_IRQ_HPH_PA_OCPL_FAULT); tabla_enable_irq(codec->control_data, TABLA_IRQ_HPH_PA_OCPR_FAULT); } return rc; } EXPORT_SYMBOL_GPL(tabla_hs_detect); static int tabla_determine_button(const struct tabla_priv *priv, const s32 bias_mv) { s16 *v_btn_low, *v_btn_high; struct tabla_mbhc_btn_detect_cfg *btn_det; int i, btn = -1; btn_det = TABLA_MBHC_CAL_BTN_DET_PTR(priv->calibration); v_btn_low = tabla_mbhc_cal_btn_det_mp(btn_det, TABLA_BTN_DET_V_BTN_LOW); v_btn_high = tabla_mbhc_cal_btn_det_mp(btn_det, TABLA_BTN_DET_V_BTN_HIGH); for (i = 0; i < btn_det->num_btn; i++) { if ((v_btn_low[i] <= bias_mv) && (v_btn_high[i] >= bias_mv)) { btn = i; break; } } if (btn == -1) pr_debug("%s: couldn't find button number for mic mv %d\n", __func__, bias_mv); return btn; } static int tabla_get_button_mask(const int btn) { int mask = 0; switch (btn) { case 0: mask = SND_JACK_BTN_0; break; case 1: mask = SND_JACK_BTN_1; break; case 2: mask = SND_JACK_BTN_2; break; case 3: mask = SND_JACK_BTN_3; break; case 4: mask = SND_JACK_BTN_4; break; case 5: mask = SND_JACK_BTN_5; break; case 6: mask = SND_JACK_BTN_6; break; case 7: mask = SND_JACK_BTN_7; break; } return mask; } static irqreturn_t tabla_dce_handler(int irq, void *data) { int i, mask; short bias_value_dce; s32 bias_mv_dce; int btn = -1, meas = 0; struct tabla_priv *priv = data; const struct tabla_mbhc_btn_detect_cfg *d = TABLA_MBHC_CAL_BTN_DET_PTR(priv->calibration); short btnmeas[d->n_btn_meas + 1]; struct snd_soc_codec *codec = priv->codec; struct tabla *core = dev_get_drvdata(priv->codec->dev->parent); tabla_disable_irq(codec->control_data, TABLA_IRQ_MBHC_REMOVAL); tabla_disable_irq(codec->control_data, TABLA_IRQ_MBHC_POTENTIAL); bias_value_dce = tabla_codec_read_dce_result(codec); bias_mv_dce = tabla_codec_sta_dce_v(codec, 1, bias_value_dce); /* determine pressed button */ btnmeas[meas++] = tabla_determine_button(priv, bias_mv_dce); pr_debug("%s: meas %d - DCE %d,%d, button %d\n", __func__, meas - 1, bias_value_dce, bias_mv_dce, btnmeas[meas - 1]); if (d->n_btn_meas == 0) btn = btnmeas[0]; for (; ((d->n_btn_meas) && (meas < (d->n_btn_meas + 1))); meas++) { bias_value_dce = tabla_codec_sta_dce(codec, 1); bias_mv_dce = tabla_codec_sta_dce_v(codec, 1, bias_value_dce); btnmeas[meas] = tabla_determine_button(priv, bias_mv_dce); pr_debug("%s: meas %d - DCE %d,%d, button %d\n", __func__, meas, bias_value_dce, bias_mv_dce, btnmeas[meas]); /* if large enough measurements are collected, * start to check if last all n_btn_con measurements were * in same button low/high range */ if (meas + 1 >= d->n_btn_con) { for (i = 0; i < d->n_btn_con; i++) if ((btnmeas[meas] < 0) || (btnmeas[meas] != btnmeas[meas - i])) break; if (i == d->n_btn_con) { /* button pressed */ btn = btnmeas[meas]; break; } } /* if left measurements are less than n_btn_con, * it's impossible to find button number */ if ((d->n_btn_meas - meas) < d->n_btn_con) break; } if (btn >= 0) { mask = tabla_get_button_mask(btn); priv->buttons_pressed |= mask; msleep(100); /* XXX: assuming button 0 has the lowest micbias voltage */ if (btn == 0) { tabla_lock_sleep(core); if (schedule_delayed_work(&priv->btn0_dwork, msecs_to_jiffies(400)) == 0) { WARN(1, "Button pressed twice without release" "event\n"); tabla_unlock_sleep(core); } } else { pr_debug("%s: Reporting short button %d(0x%x) press\n", __func__, btn, mask); tabla_snd_soc_jack_report(priv, priv->button_jack, mask, mask); } } else { pr_debug("%s: bogus button press, too short press?\n", __func__); } return IRQ_HANDLED; } static irqreturn_t tabla_release_handler(int irq, void *data) { int ret; short mb_v; struct tabla_priv *priv = data; struct snd_soc_codec *codec = priv->codec; struct tabla *core = dev_get_drvdata(priv->codec->dev->parent); pr_debug("%s: enter\n", __func__); tabla_disable_irq(codec->control_data, TABLA_IRQ_MBHC_RELEASE); if (priv->buttons_pressed & SND_JACK_BTN_0) { ret = cancel_delayed_work(&priv->btn0_dwork); if (ret == 0) { pr_debug("%s: Reporting long button 0 release event\n", __func__); if (priv->button_jack) tabla_snd_soc_jack_report(priv, priv->button_jack, 0, SND_JACK_BTN_0); } else { /* if scheduled btn0_dwork is canceled from here, * we have to unlock from here instead btn0_work */ tabla_unlock_sleep(core); mb_v = tabla_codec_sta_dce(codec, 0); pr_debug("%s: Mic Voltage on release STA: %d,%d\n", __func__, mb_v, tabla_codec_sta_dce_v(codec, 0, mb_v)); if (mb_v < (short)priv->mbhc_data.v_b1_hu || mb_v > (short)priv->mbhc_data.v_ins_hu) pr_debug("%s: Fake buttton press interrupt\n", __func__); else if (priv->button_jack) { pr_debug("%s: Reporting short button 0 " "press and release\n", __func__); tabla_snd_soc_jack_report(priv, priv->button_jack, SND_JACK_BTN_0, SND_JACK_BTN_0); tabla_snd_soc_jack_report(priv, priv->button_jack, 0, SND_JACK_BTN_0); } } priv->buttons_pressed &= ~SND_JACK_BTN_0; } if (priv->buttons_pressed) { pr_debug("%s:reporting button release mask 0x%x\n", __func__, priv->buttons_pressed); tabla_snd_soc_jack_report(priv, priv->button_jack, 0, priv->buttons_pressed); /* hardware doesn't detect another button press until * already pressed button is released. * therefore buttons_pressed has only one button's mask. */ priv->buttons_pressed &= ~TABLA_JACK_BUTTON_MASK; } tabla_codec_start_hs_polling(codec); return IRQ_HANDLED; } static void tabla_codec_shutdown_hs_removal_detect(struct snd_soc_codec *codec) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); const struct tabla_mbhc_general_cfg *generic = TABLA_MBHC_CAL_GENERAL_PTR(tabla->calibration); if (!tabla->mclk_enabled && !tabla->mbhc_polling_active) tabla_codec_enable_config_mode(codec, 1); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0x2, 0x2); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_B1_CTL, 0x6, 0x0); snd_soc_update_bits(codec, tabla->mbhc_bias_regs.mbhc_reg, 0x80, 0x00); usleep_range(generic->t_shutdown_plug_rem, generic->t_shutdown_plug_rem); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_CLK_CTL, 0xA, 0x8); if (!tabla->mclk_enabled && !tabla->mbhc_polling_active) tabla_codec_enable_config_mode(codec, 0); snd_soc_write(codec, TABLA_A_MBHC_SCALING_MUX_1, 0x00); } static void tabla_codec_shutdown_hs_polling(struct snd_soc_codec *codec) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); tabla_codec_shutdown_hs_removal_detect(codec); if (!tabla->mclk_enabled) { snd_soc_update_bits(codec, TABLA_A_TX_COM_BIAS, 0xE0, 0x00); tabla_codec_disable_clock_block(codec); tabla_codec_enable_bandgap(codec, TABLA_BANDGAP_OFF); } tabla->mbhc_polling_active = false; } static irqreturn_t tabla_hphl_ocp_irq(int irq, void *data) { struct tabla_priv *tabla = data; struct snd_soc_codec *codec; pr_info("%s: received HPHL OCP irq\n", __func__); if (tabla) { codec = tabla->codec; if (tabla->hphlocp_cnt++ < TABLA_OCP_ATTEMPT) { pr_info("%s: retry\n", __func__); snd_soc_update_bits(codec, TABLA_A_RX_HPH_OCP_CTL, 0x10, 0x00); snd_soc_update_bits(codec, TABLA_A_RX_HPH_OCP_CTL, 0x10, 0x10); } else { tabla_disable_irq(codec->control_data, TABLA_IRQ_HPH_PA_OCPL_FAULT); tabla->hphlocp_cnt = 0; tabla->hph_status |= SND_JACK_OC_HPHL; if (tabla->headset_jack) tabla_snd_soc_jack_report(tabla, tabla->headset_jack, tabla->hph_status, TABLA_JACK_MASK); } } else { pr_err("%s: Bad tabla private data\n", __func__); } return IRQ_HANDLED; } static irqreturn_t tabla_hphr_ocp_irq(int irq, void *data) { struct tabla_priv *tabla = data; struct snd_soc_codec *codec; pr_info("%s: received HPHR OCP irq\n", __func__); if (tabla) { codec = tabla->codec; if (tabla->hphrocp_cnt++ < TABLA_OCP_ATTEMPT) { pr_info("%s: retry\n", __func__); snd_soc_update_bits(codec, TABLA_A_RX_HPH_OCP_CTL, 0x10, 0x00); snd_soc_update_bits(codec, TABLA_A_RX_HPH_OCP_CTL, 0x10, 0x10); } else { tabla_disable_irq(codec->control_data, TABLA_IRQ_HPH_PA_OCPR_FAULT); tabla->hphrocp_cnt = 0; tabla->hph_status |= SND_JACK_OC_HPHR; if (tabla->headset_jack) tabla_snd_soc_jack_report(tabla, tabla->headset_jack, tabla->hph_status, TABLA_JACK_MASK); } } else { pr_err("%s: Bad tabla private data\n", __func__); } return IRQ_HANDLED; } static void tabla_sync_hph_state(struct tabla_priv *tabla) { if (test_and_clear_bit(TABLA_HPHR_PA_OFF_ACK, &tabla->hph_pa_dac_state)) { pr_debug("%s: HPHR clear flag and enable PA\n", __func__); snd_soc_update_bits(tabla->codec, TABLA_A_RX_HPH_CNP_EN, 0x10, 1 << 4); } if (test_and_clear_bit(TABLA_HPHL_PA_OFF_ACK, &tabla->hph_pa_dac_state)) { pr_debug("%s: HPHL clear flag and enable PA\n", __func__); snd_soc_update_bits(tabla->codec, TABLA_A_RX_HPH_CNP_EN, 0x20, 1 << 5); } if (test_and_clear_bit(TABLA_HPHR_DAC_OFF_ACK, &tabla->hph_pa_dac_state)) { pr_debug("%s: HPHR clear flag and enable DAC\n", __func__); snd_soc_update_bits(tabla->codec, TABLA_A_RX_HPH_R_DAC_CTL, 0xC0, 0xC0); } if (test_and_clear_bit(TABLA_HPHL_DAC_OFF_ACK, &tabla->hph_pa_dac_state)) { pr_debug("%s: HPHL clear flag and enable DAC\n", __func__); snd_soc_update_bits(tabla->codec, TABLA_A_RX_HPH_L_DAC_CTL, 0xC0, 0xC0); } } static irqreturn_t tabla_hs_insert_irq(int irq, void *data) { struct tabla_priv *priv = data; struct snd_soc_codec *codec = priv->codec; const struct tabla_mbhc_plug_detect_cfg *plug_det = TABLA_MBHC_CAL_PLUG_DET_PTR(priv->calibration); int ldo_h_on, micb_cfilt_on; short mb_v; u8 is_removal; int mic_mv; pr_debug("%s: enter\n", __func__); tabla_disable_irq(codec->control_data, TABLA_IRQ_MBHC_INSERTION); is_removal = snd_soc_read(codec, TABLA_A_CDC_MBHC_INT_CTL) & 0x02; snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_INT_CTL, 0x03, 0x00); /* Turn off both HPH and MIC line schmitt triggers */ snd_soc_update_bits(codec, priv->mbhc_bias_regs.mbhc_reg, 0x90, 0x00); snd_soc_update_bits(codec, TABLA_A_MBHC_HPH, 0x13, 0x00); if (priv->mbhc_fake_ins_start && time_after(jiffies, priv->mbhc_fake_ins_start + msecs_to_jiffies(TABLA_FAKE_INS_THRESHOLD_MS))) { pr_debug("%s: fake context interrupt, reset insertion\n", __func__); priv->mbhc_fake_ins_start = 0; tabla_codec_shutdown_hs_polling(codec); tabla_codec_enable_hs_detect(codec, 1); return IRQ_HANDLED; } ldo_h_on = snd_soc_read(codec, TABLA_A_LDO_H_MODE_1) & 0x80; micb_cfilt_on = snd_soc_read(codec, priv->mbhc_bias_regs.cfilt_ctl) & 0x80; if (!ldo_h_on) snd_soc_update_bits(codec, TABLA_A_LDO_H_MODE_1, 0x80, 0x80); if (!micb_cfilt_on) snd_soc_update_bits(codec, priv->mbhc_bias_regs.cfilt_ctl, 0x80, 0x80); if (plug_det->t_ins_complete > 20) msleep(plug_det->t_ins_complete); else usleep_range(plug_det->t_ins_complete * 1000, plug_det->t_ins_complete * 1000); if (!ldo_h_on) snd_soc_update_bits(codec, TABLA_A_LDO_H_MODE_1, 0x80, 0x0); if (!micb_cfilt_on) snd_soc_update_bits(codec, priv->mbhc_bias_regs.cfilt_ctl, 0x80, 0x0); if (is_removal) { /* * If headphone is removed while playback is in progress, * it is possible that micbias will be switched to VDDIO. */ if (priv->mbhc_micbias_switched) tabla_codec_switch_micbias(codec, 0); priv->hph_status &= ~SND_JACK_HEADPHONE; /* If headphone PA is on, check if userspace receives * removal event to sync-up PA's state */ if (tabla_is_hph_pa_on(codec)) { set_bit(TABLA_HPHL_PA_OFF_ACK, &priv->hph_pa_dac_state); set_bit(TABLA_HPHR_PA_OFF_ACK, &priv->hph_pa_dac_state); } if (tabla_is_hph_dac_on(codec, 1)) set_bit(TABLA_HPHL_DAC_OFF_ACK, &priv->hph_pa_dac_state); if (tabla_is_hph_dac_on(codec, 0)) set_bit(TABLA_HPHR_DAC_OFF_ACK, &priv->hph_pa_dac_state); if (priv->headset_jack) { pr_debug("%s: Reporting removal\n", __func__); tabla_snd_soc_jack_report(priv, priv->headset_jack, priv->hph_status, TABLA_JACK_MASK); } tabla_codec_shutdown_hs_removal_detect(codec); tabla_codec_enable_hs_detect(codec, 1); return IRQ_HANDLED; } mb_v = tabla_codec_setup_hs_polling(codec); mic_mv = tabla_codec_sta_dce_v(codec, 0, mb_v); if (mb_v > (short) priv->mbhc_data.v_ins_hu) { pr_debug("%s: Fake insertion interrupt since %dmsec ago, " "STA : %d,%d\n", __func__, (priv->mbhc_fake_ins_start ? jiffies_to_msecs(jiffies - priv->mbhc_fake_ins_start) : 0), mb_v, mic_mv); if (time_after(jiffies, priv->mbhc_fake_ins_start + msecs_to_jiffies(TABLA_FAKE_INS_THRESHOLD_MS))) { /* Disable HPH trigger and enable MIC line trigger */ snd_soc_update_bits(codec, TABLA_A_MBHC_HPH, 0x12, 0x00); snd_soc_update_bits(codec, priv->mbhc_bias_regs.mbhc_reg, 0x60, plug_det->mic_current << 5); snd_soc_update_bits(codec, priv->mbhc_bias_regs.mbhc_reg, 0x80, 0x80); usleep_range(plug_det->t_mic_pid, plug_det->t_mic_pid); snd_soc_update_bits(codec, priv->mbhc_bias_regs.mbhc_reg, 0x10, 0x10); } else { if (priv->mbhc_fake_ins_start == 0) priv->mbhc_fake_ins_start = jiffies; /* Setup normal insert detection * Enable HPH Schmitt Trigger */ snd_soc_update_bits(codec, TABLA_A_MBHC_HPH, 0x13 | 0x0C, 0x13 | plug_det->hph_current << 2); } /* Setup for insertion detection */ snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_INT_CTL, 0x2, 0); tabla_enable_irq(codec->control_data, TABLA_IRQ_MBHC_INSERTION); snd_soc_update_bits(codec, TABLA_A_CDC_MBHC_INT_CTL, 0x1, 0x1); } else if (mb_v < (short) priv->mbhc_data.v_no_mic) { pr_debug("%s: Headphone Detected, mb_v: %d,%d\n", __func__, mb_v, mic_mv); priv->mbhc_fake_ins_start = 0; priv->hph_status |= SND_JACK_HEADPHONE; if (priv->headset_jack) { pr_debug("%s: Reporting insertion %d\n", __func__, SND_JACK_HEADPHONE); tabla_snd_soc_jack_report(priv, priv->headset_jack, priv->hph_status, TABLA_JACK_MASK); } tabla_codec_shutdown_hs_polling(codec); tabla_codec_enable_hs_detect(codec, 0); tabla_sync_hph_state(priv); } else { pr_debug("%s: Headset detected, mb_v: %d,%d\n", __func__, mb_v, mic_mv); priv->mbhc_fake_ins_start = 0; priv->hph_status |= SND_JACK_HEADSET; if (priv->headset_jack) { pr_debug("%s: Reporting insertion %d\n", __func__, SND_JACK_HEADSET); tabla_snd_soc_jack_report(priv, priv->headset_jack, priv->hph_status, TABLA_JACK_MASK); } /* avoid false button press detect */ msleep(50); tabla_codec_start_hs_polling(codec); tabla_sync_hph_state(priv); } return IRQ_HANDLED; } static irqreturn_t tabla_hs_remove_irq(int irq, void *data) { short bias_value; struct tabla_priv *priv = data; struct snd_soc_codec *codec = priv->codec; const struct tabla_mbhc_general_cfg *generic = TABLA_MBHC_CAL_GENERAL_PTR(priv->calibration); int fake_removal = 0; int min_us = TABLA_FAKE_REMOVAL_MIN_PERIOD_MS * 1000; pr_debug("%s: enter, removal interrupt\n", __func__); tabla_disable_irq(codec->control_data, TABLA_IRQ_MBHC_REMOVAL); tabla_disable_irq(codec->control_data, TABLA_IRQ_MBHC_POTENTIAL); tabla_disable_irq(codec->control_data, TABLA_IRQ_MBHC_RELEASE); usleep_range(generic->t_shutdown_plug_rem, generic->t_shutdown_plug_rem); do { bias_value = tabla_codec_sta_dce(codec, 1); pr_debug("%s: DCE %d,%d, %d us left\n", __func__, bias_value, tabla_codec_sta_dce_v(codec, 1, bias_value), min_us); if (bias_value < (short)priv->mbhc_data.v_ins_h) { fake_removal = 1; break; } min_us -= priv->mbhc_data.t_dce; } while (min_us > 0); if (fake_removal) { pr_debug("False alarm, headset not actually removed\n"); tabla_codec_start_hs_polling(codec); } else { /* * If this removal is not false, first check the micbias * switch status and switch it to LDOH if it is already * switched to VDDIO. */ if (priv->mbhc_micbias_switched) tabla_codec_switch_micbias(codec, 0); priv->hph_status &= ~SND_JACK_HEADSET; if (priv->headset_jack) { pr_debug("%s: Reporting removal\n", __func__); tabla_snd_soc_jack_report(priv, priv->headset_jack, 0, TABLA_JACK_MASK); } tabla_codec_shutdown_hs_polling(codec); tabla_codec_enable_hs_detect(codec, 1); } return IRQ_HANDLED; } static unsigned long slimbus_value; static irqreturn_t tabla_slimbus_irq(int irq, void *data) { struct tabla_priv *priv = data; struct snd_soc_codec *codec = priv->codec; int i, j; u8 val; for (i = 0; i < TABLA_SLIM_NUM_PORT_REG; i++) { slimbus_value = tabla_interface_reg_read(codec->control_data, TABLA_SLIM_PGD_PORT_INT_STATUS0 + i); for_each_set_bit(j, &slimbus_value, BITS_PER_BYTE) { val = tabla_interface_reg_read(codec->control_data, TABLA_SLIM_PGD_PORT_INT_SOURCE0 + i*8 + j); if (val & 0x1) pr_err_ratelimited("overflow error on port %x," " value %x\n", i*8 + j, val); if (val & 0x2) pr_err_ratelimited("underflow error on port %x," " value %x\n", i*8 + j, val); } tabla_interface_reg_write(codec->control_data, TABLA_SLIM_PGD_PORT_INT_CLR0 + i, 0xFF); } return IRQ_HANDLED; } static int tabla_handle_pdata(struct tabla_priv *tabla) { struct snd_soc_codec *codec = tabla->codec; struct tabla_pdata *pdata = tabla->pdata; int k1, k2, k3, rc = 0; u8 leg_mode = pdata->amic_settings.legacy_mode; u8 txfe_bypass = pdata->amic_settings.txfe_enable; u8 txfe_buff = pdata->amic_settings.txfe_buff; u8 flag = pdata->amic_settings.use_pdata; u8 i = 0, j = 0; u8 val_txfe = 0, value = 0; if (!pdata) { rc = -ENODEV; goto done; } /* Make sure settings are correct */ if ((pdata->micbias.ldoh_v > TABLA_LDOH_2P85_V) || (pdata->micbias.bias1_cfilt_sel > TABLA_CFILT3_SEL) || (pdata->micbias.bias2_cfilt_sel > TABLA_CFILT3_SEL) || (pdata->micbias.bias3_cfilt_sel > TABLA_CFILT3_SEL) || (pdata->micbias.bias4_cfilt_sel > TABLA_CFILT3_SEL)) { rc = -EINVAL; goto done; } /* figure out k value */ k1 = tabla_find_k_value(pdata->micbias.ldoh_v, pdata->micbias.cfilt1_mv); k2 = tabla_find_k_value(pdata->micbias.ldoh_v, pdata->micbias.cfilt2_mv); k3 = tabla_find_k_value(pdata->micbias.ldoh_v, pdata->micbias.cfilt3_mv); if (IS_ERR_VALUE(k1) || IS_ERR_VALUE(k2) || IS_ERR_VALUE(k3)) { rc = -EINVAL; goto done; } /* Set voltage level and always use LDO */ snd_soc_update_bits(codec, TABLA_A_LDO_H_MODE_1, 0x0C, (pdata->micbias.ldoh_v << 2)); snd_soc_update_bits(codec, TABLA_A_MICB_CFILT_1_VAL, 0xFC, (k1 << 2)); snd_soc_update_bits(codec, TABLA_A_MICB_CFILT_2_VAL, 0xFC, (k2 << 2)); snd_soc_update_bits(codec, TABLA_A_MICB_CFILT_3_VAL, 0xFC, (k3 << 2)); snd_soc_update_bits(codec, TABLA_A_MICB_1_CTL, 0x60, (pdata->micbias.bias1_cfilt_sel << 5)); snd_soc_update_bits(codec, TABLA_A_MICB_2_CTL, 0x60, (pdata->micbias.bias2_cfilt_sel << 5)); snd_soc_update_bits(codec, TABLA_A_MICB_3_CTL, 0x60, (pdata->micbias.bias3_cfilt_sel << 5)); snd_soc_update_bits(codec, tabla->reg_addr.micb_4_ctl, 0x60, (pdata->micbias.bias4_cfilt_sel << 5)); for (i = 0; i < 6; j++, i += 2) { if (flag & (0x01 << i)) { value = (leg_mode & (0x01 << i)) ? 0x10 : 0x00; val_txfe = (txfe_bypass & (0x01 << i)) ? 0x20 : 0x00; val_txfe = val_txfe | ((txfe_buff & (0x01 << i)) ? 0x10 : 0x00); snd_soc_update_bits(codec, TABLA_A_TX_1_2_EN + j * 10, 0x10, value); snd_soc_update_bits(codec, TABLA_A_TX_1_2_TEST_EN + j * 10, 0x30, val_txfe); } if (flag & (0x01 << (i + 1))) { value = (leg_mode & (0x01 << (i + 1))) ? 0x01 : 0x00; val_txfe = (txfe_bypass & (0x01 << (i + 1))) ? 0x02 : 0x00; val_txfe |= (txfe_buff & (0x01 << (i + 1))) ? 0x01 : 0x00; snd_soc_update_bits(codec, TABLA_A_TX_1_2_EN + j * 10, 0x01, value); snd_soc_update_bits(codec, TABLA_A_TX_1_2_TEST_EN + j * 10, 0x03, val_txfe); } } if (flag & 0x40) { value = (leg_mode & 0x40) ? 0x10 : 0x00; value = value | ((txfe_bypass & 0x40) ? 0x02 : 0x00); value = value | ((txfe_buff & 0x40) ? 0x01 : 0x00); snd_soc_update_bits(codec, TABLA_A_TX_7_MBHC_EN, 0x13, value); } if (pdata->ocp.use_pdata) { /* not defined in CODEC specification */ if (pdata->ocp.hph_ocp_limit == 1 || pdata->ocp.hph_ocp_limit == 5) { rc = -EINVAL; goto done; } snd_soc_update_bits(codec, TABLA_A_RX_COM_OCP_CTL, 0x0F, pdata->ocp.num_attempts); snd_soc_write(codec, TABLA_A_RX_COM_OCP_COUNT, ((pdata->ocp.run_time << 4) | pdata->ocp.wait_time)); snd_soc_update_bits(codec, TABLA_A_RX_HPH_OCP_CTL, 0xE0, (pdata->ocp.hph_ocp_limit << 5)); } done: return rc; } static const struct tabla_reg_mask_val tabla_1_1_reg_defaults[] = { /* Tabla 1.1 MICBIAS changes */ TABLA_REG_VAL(TABLA_A_MICB_1_INT_RBIAS, 0x24), TABLA_REG_VAL(TABLA_A_MICB_2_INT_RBIAS, 0x24), TABLA_REG_VAL(TABLA_A_MICB_3_INT_RBIAS, 0x24), /* Tabla 1.1 HPH changes */ TABLA_REG_VAL(TABLA_A_RX_HPH_BIAS_PA, 0x57), TABLA_REG_VAL(TABLA_A_RX_HPH_BIAS_LDO, 0x56), /* Tabla 1.1 EAR PA changes */ TABLA_REG_VAL(TABLA_A_RX_EAR_BIAS_PA, 0xA6), TABLA_REG_VAL(TABLA_A_RX_EAR_GAIN, 0x02), TABLA_REG_VAL(TABLA_A_RX_EAR_VCM, 0x03), /* Tabla 1.1 Lineout_5 Changes */ TABLA_REG_VAL(TABLA_A_RX_LINE_5_GAIN, 0x10), /* Tabla 1.1 RX Changes */ TABLA_REG_VAL(TABLA_A_CDC_RX1_B5_CTL, 0x78), TABLA_REG_VAL(TABLA_A_CDC_RX2_B5_CTL, 0x78), TABLA_REG_VAL(TABLA_A_CDC_RX3_B5_CTL, 0x78), TABLA_REG_VAL(TABLA_A_CDC_RX4_B5_CTL, 0x78), TABLA_REG_VAL(TABLA_A_CDC_RX5_B5_CTL, 0x78), TABLA_REG_VAL(TABLA_A_CDC_RX6_B5_CTL, 0x78), TABLA_REG_VAL(TABLA_A_CDC_RX7_B5_CTL, 0x78), /* Tabla 1.1 RX1 and RX2 Changes */ TABLA_REG_VAL(TABLA_A_CDC_RX1_B6_CTL, 0xA0), TABLA_REG_VAL(TABLA_A_CDC_RX2_B6_CTL, 0xA0), /* Tabla 1.1 RX3 to RX7 Changes */ TABLA_REG_VAL(TABLA_A_CDC_RX3_B6_CTL, 0x80), TABLA_REG_VAL(TABLA_A_CDC_RX4_B6_CTL, 0x80), TABLA_REG_VAL(TABLA_A_CDC_RX5_B6_CTL, 0x80), TABLA_REG_VAL(TABLA_A_CDC_RX6_B6_CTL, 0x80), TABLA_REG_VAL(TABLA_A_CDC_RX7_B6_CTL, 0x80), /* Tabla 1.1 CLASSG Changes */ TABLA_REG_VAL(TABLA_A_CDC_CLSG_FREQ_THRESH_B3_CTL, 0x1B), }; static const struct tabla_reg_mask_val tabla_2_0_reg_defaults[] = { /* Tabla 2.0 MICBIAS changes */ TABLA_REG_VAL(TABLA_A_MICB_2_MBHC, 0x02), }; static const struct tabla_reg_mask_val tabla_1_x_only_reg_2_0_defaults[] = { TABLA_REG_VAL(TABLA_1_A_MICB_4_INT_RBIAS, 0x24), }; static const struct tabla_reg_mask_val tabla_2_only_reg_2_0_defaults[] = { TABLA_REG_VAL(TABLA_2_A_MICB_4_INT_RBIAS, 0x24), }; static void tabla_update_reg_defaults(struct snd_soc_codec *codec) { u32 i; struct tabla *tabla_core = dev_get_drvdata(codec->dev->parent); for (i = 0; i < ARRAY_SIZE(tabla_1_1_reg_defaults); i++) snd_soc_write(codec, tabla_1_1_reg_defaults[i].reg, tabla_1_1_reg_defaults[i].val); for (i = 0; i < ARRAY_SIZE(tabla_2_0_reg_defaults); i++) snd_soc_write(codec, tabla_2_0_reg_defaults[i].reg, tabla_2_0_reg_defaults[i].val); if (TABLA_IS_1_X(tabla_core->version)) { for (i = 0; i < ARRAY_SIZE(tabla_1_x_only_reg_2_0_defaults); i++) snd_soc_write(codec, tabla_1_x_only_reg_2_0_defaults[i].reg, tabla_1_x_only_reg_2_0_defaults[i].val); } else { for (i = 0; i < ARRAY_SIZE(tabla_2_only_reg_2_0_defaults); i++) snd_soc_write(codec, tabla_2_only_reg_2_0_defaults[i].reg, tabla_2_only_reg_2_0_defaults[i].val); } } static const struct tabla_reg_mask_val tabla_codec_reg_init_val[] = { /* Initialize current threshold to 350MA * number of wait and run cycles to 4096 */ {TABLA_A_RX_HPH_OCP_CTL, 0xE0, 0x60}, {TABLA_A_RX_COM_OCP_COUNT, 0xFF, 0xFF}, {TABLA_A_QFUSE_CTL, 0xFF, 0x03}, /* Initialize gain registers to use register gain */ {TABLA_A_RX_HPH_L_GAIN, 0x10, 0x10}, {TABLA_A_RX_HPH_R_GAIN, 0x10, 0x10}, {TABLA_A_RX_LINE_1_GAIN, 0x10, 0x10}, {TABLA_A_RX_LINE_2_GAIN, 0x10, 0x10}, {TABLA_A_RX_LINE_3_GAIN, 0x10, 0x10}, {TABLA_A_RX_LINE_4_GAIN, 0x10, 0x10}, /* Initialize mic biases to differential mode */ {TABLA_A_MICB_1_INT_RBIAS, 0x24, 0x24}, {TABLA_A_MICB_2_INT_RBIAS, 0x24, 0x24}, {TABLA_A_MICB_3_INT_RBIAS, 0x24, 0x24}, {TABLA_A_CDC_CONN_CLSG_CTL, 0x3C, 0x14}, /* Use 16 bit sample size for TX1 to TX6 */ {TABLA_A_CDC_CONN_TX_SB_B1_CTL, 0x30, 0x20}, {TABLA_A_CDC_CONN_TX_SB_B2_CTL, 0x30, 0x20}, {TABLA_A_CDC_CONN_TX_SB_B3_CTL, 0x30, 0x20}, {TABLA_A_CDC_CONN_TX_SB_B4_CTL, 0x30, 0x20}, {TABLA_A_CDC_CONN_TX_SB_B5_CTL, 0x30, 0x20}, {TABLA_A_CDC_CONN_TX_SB_B6_CTL, 0x30, 0x20}, /* Use 16 bit sample size for TX7 to TX10 */ {TABLA_A_CDC_CONN_TX_SB_B7_CTL, 0x60, 0x40}, {TABLA_A_CDC_CONN_TX_SB_B8_CTL, 0x60, 0x40}, {TABLA_A_CDC_CONN_TX_SB_B9_CTL, 0x60, 0x40}, {TABLA_A_CDC_CONN_TX_SB_B10_CTL, 0x60, 0x40}, /* Use 16 bit sample size for RX */ {TABLA_A_CDC_CONN_RX_SB_B1_CTL, 0xFF, 0xAA}, {TABLA_A_CDC_CONN_RX_SB_B2_CTL, 0xFF, 0xAA}, /*enable HPF filter for TX paths */ {TABLA_A_CDC_TX1_MUX_CTL, 0x8, 0x0}, {TABLA_A_CDC_TX2_MUX_CTL, 0x8, 0x0}, {TABLA_A_CDC_TX3_MUX_CTL, 0x8, 0x0}, {TABLA_A_CDC_TX4_MUX_CTL, 0x8, 0x0}, {TABLA_A_CDC_TX5_MUX_CTL, 0x8, 0x0}, {TABLA_A_CDC_TX6_MUX_CTL, 0x8, 0x0}, {TABLA_A_CDC_TX7_MUX_CTL, 0x8, 0x0}, {TABLA_A_CDC_TX8_MUX_CTL, 0x8, 0x0}, {TABLA_A_CDC_TX9_MUX_CTL, 0x8, 0x0}, {TABLA_A_CDC_TX10_MUX_CTL, 0x8, 0x0}, }; static const struct tabla_reg_mask_val tabla_1_x_codec_reg_init_val[] = { /* Initialize mic biases to differential mode */ {TABLA_1_A_MICB_4_INT_RBIAS, 0x24, 0x24}, }; static const struct tabla_reg_mask_val tabla_2_higher_codec_reg_init_val[] = { /* Initialize mic biases to differential mode */ {TABLA_2_A_MICB_4_INT_RBIAS, 0x24, 0x24}, }; static void tabla_codec_init_reg(struct snd_soc_codec *codec) { u32 i; struct tabla *tabla_core = dev_get_drvdata(codec->dev->parent); for (i = 0; i < ARRAY_SIZE(tabla_codec_reg_init_val); i++) snd_soc_update_bits(codec, tabla_codec_reg_init_val[i].reg, tabla_codec_reg_init_val[i].mask, tabla_codec_reg_init_val[i].val); if (TABLA_IS_1_X(tabla_core->version)) { for (i = 0; i < ARRAY_SIZE(tabla_1_x_codec_reg_init_val); i++) snd_soc_update_bits(codec, tabla_1_x_codec_reg_init_val[i].reg, tabla_1_x_codec_reg_init_val[i].mask, tabla_1_x_codec_reg_init_val[i].val); } else { for (i = 0; i < ARRAY_SIZE(tabla_2_higher_codec_reg_init_val); i++) snd_soc_update_bits(codec, tabla_2_higher_codec_reg_init_val[i].reg, tabla_2_higher_codec_reg_init_val[i].mask, tabla_2_higher_codec_reg_init_val[i].val); } } static void tabla_update_reg_address(struct tabla_priv *priv) { struct tabla *tabla_core = dev_get_drvdata(priv->codec->dev->parent); struct tabla_reg_address *reg_addr = &priv->reg_addr; if (TABLA_IS_1_X(tabla_core->version)) { reg_addr->micb_4_ctl = TABLA_1_A_MICB_4_CTL; reg_addr->micb_4_int_rbias = TABLA_1_A_MICB_4_INT_RBIAS; reg_addr->micb_4_int_rbias = TABLA_1_A_MICB_4_INT_RBIAS; } else if (TABLA_IS_2_0(tabla_core->version)) { reg_addr->micb_4_ctl = TABLA_2_A_MICB_4_CTL; reg_addr->micb_4_int_rbias = TABLA_2_A_MICB_4_INT_RBIAS; reg_addr->micb_4_int_rbias = TABLA_2_A_MICB_4_INT_RBIAS; } } static int tabla_codec_probe(struct snd_soc_codec *codec) { struct tabla *control; struct tabla_priv *tabla; struct snd_soc_dapm_context *dapm = &codec->dapm; int ret = 0; int i; codec->control_data = dev_get_drvdata(codec->dev->parent); control = codec->control_data; tabla = kzalloc(sizeof(struct tabla_priv), GFP_KERNEL); if (!tabla) { dev_err(codec->dev, "Failed to allocate private data\n"); return -ENOMEM; } /* Make sure mbhc micbias register addresses are zeroed out */ memset(&tabla->mbhc_bias_regs, 0, sizeof(struct mbhc_micbias_regs)); tabla->cfilt_k_value = 0; tabla->mbhc_micbias_switched = false; /* Make sure mbhc intenal calibration data is zeroed out */ memset(&tabla->mbhc_data, 0, sizeof(struct mbhc_internal_cal_data)); tabla->mbhc_data.t_sta_dce = DEFAULT_DCE_STA_WAIT; tabla->mbhc_data.t_dce = DEFAULT_DCE_WAIT; tabla->mbhc_data.t_sta = DEFAULT_STA_WAIT; snd_soc_codec_set_drvdata(codec, tabla); tabla->mclk_enabled = false; tabla->bandgap_type = TABLA_BANDGAP_OFF; tabla->clock_active = false; tabla->config_mode_active = false; tabla->mbhc_polling_active = false; tabla->mbhc_fake_ins_start = 0; tabla->no_mic_headset_override = false; tabla->codec = codec; tabla->pdata = dev_get_platdata(codec->dev->parent); tabla->intf_type = tabla_get_intf_type(); tabla_update_reg_address(tabla); tabla_update_reg_defaults(codec); tabla_codec_init_reg(codec); ret = tabla_handle_pdata(tabla); if (IS_ERR_VALUE(ret)) { pr_err("%s: bad pdata\n", __func__); goto err_pdata; } snd_soc_add_controls(codec, tabla_snd_controls, ARRAY_SIZE(tabla_snd_controls)); if (TABLA_IS_1_X(control->version)) snd_soc_add_controls(codec, tabla_1_x_snd_controls, ARRAY_SIZE(tabla_1_x_snd_controls)); else snd_soc_add_controls(codec, tabla_2_higher_snd_controls, ARRAY_SIZE(tabla_2_higher_snd_controls)); snd_soc_dapm_new_controls(dapm, tabla_dapm_widgets, ARRAY_SIZE(tabla_dapm_widgets)); if (TABLA_IS_1_X(control->version)) snd_soc_dapm_new_controls(dapm, tabla_1_x_dapm_widgets, ARRAY_SIZE(tabla_1_x_dapm_widgets)); else snd_soc_dapm_new_controls(dapm, tabla_2_higher_dapm_widgets, ARRAY_SIZE(tabla_2_higher_dapm_widgets)); if (tabla->intf_type == TABLA_INTERFACE_TYPE_I2C) { snd_soc_dapm_new_controls(dapm, tabla_dapm_i2s_widgets, ARRAY_SIZE(tabla_dapm_i2s_widgets)); snd_soc_dapm_add_routes(dapm, audio_i2s_map, ARRAY_SIZE(audio_i2s_map)); } snd_soc_dapm_add_routes(dapm, audio_map, ARRAY_SIZE(audio_map)); if (TABLA_IS_1_X(control->version)) { snd_soc_dapm_add_routes(dapm, tabla_1_x_lineout_2_to_4_map, ARRAY_SIZE(tabla_1_x_lineout_2_to_4_map)); } else if (TABLA_IS_2_0(control->version)) { snd_soc_dapm_add_routes(dapm, tabla_2_x_lineout_2_to_4_map, ARRAY_SIZE(tabla_2_x_lineout_2_to_4_map)); } else { pr_err("%s : ERROR. Unsupported Tabla version 0x%2x\n", __func__, control->version); goto err_pdata; } snd_soc_dapm_sync(dapm); ret = tabla_request_irq(codec->control_data, TABLA_IRQ_MBHC_INSERTION, tabla_hs_insert_irq, "Headset insert detect", tabla); if (ret) { pr_err("%s: Failed to request irq %d\n", __func__, TABLA_IRQ_MBHC_INSERTION); goto err_insert_irq; } tabla_disable_irq(codec->control_data, TABLA_IRQ_MBHC_INSERTION); ret = tabla_request_irq(codec->control_data, TABLA_IRQ_MBHC_REMOVAL, tabla_hs_remove_irq, "Headset remove detect", tabla); if (ret) { pr_err("%s: Failed to request irq %d\n", __func__, TABLA_IRQ_MBHC_REMOVAL); goto err_remove_irq; } tabla_disable_irq(codec->control_data, TABLA_IRQ_MBHC_REMOVAL); ret = tabla_request_irq(codec->control_data, TABLA_IRQ_MBHC_POTENTIAL, tabla_dce_handler, "DC Estimation detect", tabla); if (ret) { pr_err("%s: Failed to request irq %d\n", __func__, TABLA_IRQ_MBHC_POTENTIAL); goto err_potential_irq; } tabla_disable_irq(codec->control_data, TABLA_IRQ_MBHC_POTENTIAL); ret = tabla_request_irq(codec->control_data, TABLA_IRQ_MBHC_RELEASE, tabla_release_handler, "Button Release detect", tabla); if (ret) { pr_err("%s: Failed to request irq %d\n", __func__, TABLA_IRQ_MBHC_RELEASE); goto err_release_irq; } tabla_disable_irq(codec->control_data, TABLA_IRQ_MBHC_RELEASE); ret = tabla_request_irq(codec->control_data, TABLA_IRQ_SLIMBUS, tabla_slimbus_irq, "SLIMBUS Slave", tabla); if (ret) { pr_err("%s: Failed to request irq %d\n", __func__, TABLA_IRQ_SLIMBUS); goto err_slimbus_irq; } for (i = 0; i < TABLA_SLIM_NUM_PORT_REG; i++) tabla_interface_reg_write(codec->control_data, TABLA_SLIM_PGD_PORT_INT_EN0 + i, 0xFF); ret = tabla_request_irq(codec->control_data, TABLA_IRQ_HPH_PA_OCPL_FAULT, tabla_hphl_ocp_irq, "HPH_L OCP detect", tabla); if (ret) { pr_err("%s: Failed to request irq %d\n", __func__, TABLA_IRQ_HPH_PA_OCPL_FAULT); goto err_hphl_ocp_irq; } tabla_disable_irq(codec->control_data, TABLA_IRQ_HPH_PA_OCPL_FAULT); ret = tabla_request_irq(codec->control_data, TABLA_IRQ_HPH_PA_OCPR_FAULT, tabla_hphr_ocp_irq, "HPH_R OCP detect", tabla); if (ret) { pr_err("%s: Failed to request irq %d\n", __func__, TABLA_IRQ_HPH_PA_OCPR_FAULT); goto err_hphr_ocp_irq; } tabla_disable_irq(codec->control_data, TABLA_IRQ_HPH_PA_OCPR_FAULT); #ifdef CONFIG_DEBUG_FS debug_tabla_priv = tabla; #endif return ret; err_hphr_ocp_irq: tabla_free_irq(codec->control_data, TABLA_IRQ_HPH_PA_OCPL_FAULT, tabla); err_hphl_ocp_irq: tabla_free_irq(codec->control_data, TABLA_IRQ_SLIMBUS, tabla); err_slimbus_irq: tabla_free_irq(codec->control_data, TABLA_IRQ_MBHC_RELEASE, tabla); err_release_irq: tabla_free_irq(codec->control_data, TABLA_IRQ_MBHC_POTENTIAL, tabla); err_potential_irq: tabla_free_irq(codec->control_data, TABLA_IRQ_MBHC_REMOVAL, tabla); err_remove_irq: tabla_free_irq(codec->control_data, TABLA_IRQ_MBHC_INSERTION, tabla); err_insert_irq: err_pdata: kfree(tabla); return ret; } static int tabla_codec_remove(struct snd_soc_codec *codec) { struct tabla_priv *tabla = snd_soc_codec_get_drvdata(codec); tabla_free_irq(codec->control_data, TABLA_IRQ_SLIMBUS, tabla); tabla_free_irq(codec->control_data, TABLA_IRQ_MBHC_RELEASE, tabla); tabla_free_irq(codec->control_data, TABLA_IRQ_MBHC_POTENTIAL, tabla); tabla_free_irq(codec->control_data, TABLA_IRQ_MBHC_REMOVAL, tabla); tabla_free_irq(codec->control_data, TABLA_IRQ_MBHC_INSERTION, tabla); tabla_codec_disable_clock_block(codec); tabla_codec_enable_bandgap(codec, TABLA_BANDGAP_OFF); if (tabla->mbhc_fw) release_firmware(tabla->mbhc_fw); kfree(tabla); return 0; } static struct snd_soc_codec_driver soc_codec_dev_tabla = { .probe = tabla_codec_probe, .remove = tabla_codec_remove, .read = tabla_read, .write = tabla_write, .readable_register = tabla_readable, .volatile_register = tabla_volatile, .reg_cache_size = TABLA_CACHE_SIZE, .reg_cache_default = tabla_reg_defaults, .reg_word_size = 1, }; #ifdef CONFIG_DEBUG_FS static struct dentry *debugfs_poke; static int codec_debug_open(struct inode *inode, struct file *file) { file->private_data = inode->i_private; return 0; } static ssize_t codec_debug_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos) { char lbuf[32]; char *buf; int rc; if (cnt > sizeof(lbuf) - 1) return -EINVAL; rc = copy_from_user(lbuf, ubuf, cnt); if (rc) return -EFAULT; lbuf[cnt] = '\0'; buf = (char *)lbuf; debug_tabla_priv->no_mic_headset_override = (*strsep(&buf, " ") == '0') ? false : true; return rc; } static const struct file_operations codec_debug_ops = { .open = codec_debug_open, .write = codec_debug_write, }; #endif #ifdef CONFIG_PM static int tabla_suspend(struct device *dev) { dev_dbg(dev, "%s: system suspend\n", __func__); return 0; } static int tabla_resume(struct device *dev) { dev_dbg(dev, "%s: system resume\n", __func__); return 0; } static const struct dev_pm_ops tabla_pm_ops = { .suspend = tabla_suspend, .resume = tabla_resume, }; #endif static int __devinit tabla_probe(struct platform_device *pdev) { int ret = 0; #ifdef CONFIG_DEBUG_FS debugfs_poke = debugfs_create_file("TRRS", S_IFREG | S_IRUGO, NULL, (void *) "TRRS", &codec_debug_ops); #endif if (tabla_get_intf_type() == TABLA_INTERFACE_TYPE_SLIMBUS) ret = snd_soc_register_codec(&pdev->dev, &soc_codec_dev_tabla, tabla_dai, ARRAY_SIZE(tabla_dai)); else if (tabla_get_intf_type() == TABLA_INTERFACE_TYPE_I2C) ret = snd_soc_register_codec(&pdev->dev, &soc_codec_dev_tabla, tabla_i2s_dai, ARRAY_SIZE(tabla_i2s_dai)); return ret; } static int __devexit tabla_remove(struct platform_device *pdev) { snd_soc_unregister_codec(&pdev->dev); #ifdef CONFIG_DEBUG_FS debugfs_remove(debugfs_poke); #endif return 0; } static struct platform_driver tabla_codec_driver = { .probe = tabla_probe, .remove = tabla_remove, .driver = { .name = "tabla_codec", .owner = THIS_MODULE, #ifdef CONFIG_PM .pm = &tabla_pm_ops, #endif }, }; static int __init tabla_codec_init(void) { return platform_driver_register(&tabla_codec_driver); } static void __exit tabla_codec_exit(void) { platform_driver_unregister(&tabla_codec_driver); } module_init(tabla_codec_init); module_exit(tabla_codec_exit); MODULE_DESCRIPTION("Tabla codec driver"); MODULE_VERSION("1.0"); MODULE_LICENSE("GPL v2");