/* Copyright (c) 2010-2011, Code Aurora Forum. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #define PM8058_RTC_CTRL 0x1E8 #define PM8058_RTC_ENABLE BIT(7) #define PM8058_RTC_ALARM_ENABLE BIT(1) #define PM8058_RTC_ABORT_ENABLE BIT(0) #define PM8058_RTC_ALARM_CTRL 0x1E9 #define PM8058_RTC_ALARM_CLEAR BIT(0) #define PM8058_RTC_TEST 0x1F6 #define PM8058_RTC_READ_BASE 0x1EE #define PM8058_RTC_WRITE_BASE 0x1EA #define PM8058_RTC_ALARM_BASE 0x1F2 struct pm8058_rtc { struct rtc_device *rtc0; u8 rtc_ctrl_reg; int rtc_irq; int rtc_alarm_irq; struct pm8058_chip *pm_chip; }; static int pm8058_rtc_read_bytes(struct pm8058_rtc *rtc_dd, u8 *rtc_val, int base) { int i, rc; /* * Read the 32-bit RTC/Alarm Value. * These values have to be read 8-bit at a time. */ for (i = 0; i < 4; i++) { rc = pm8058_read(rtc_dd->pm_chip, base + i, &rtc_val[i], 1); if (rc < 0) { pr_err("%s: PM8058 read failed\n", __func__); return rc; } } return 0; } static int pm8058_rtc_write_bytes(struct pm8058_rtc *rtc_dd, u8 *rtc_val, int base) { int i, rc; /* * Write the 32-bit Value. * These values have to be written 8-bit at a time. */ for (i = 0; i < 4; i++) { rc = pm8058_write(rtc_dd->pm_chip, base + i, &rtc_val[i], 1); if (rc < 0) { pr_err("%s: PM8058 read failed\n", __func__); return rc; } } return 0; } /* * Steps to write the RTC registers. * 1. Disable alarm if enabled. * 2. Write 0x00 to LSB. * 3. Write Byte[1], Byte[2], Byte[3] then Byte[0]. * 4. Enable alarm if disabled earlier. */ #ifdef CONFIG_RTC_PM8058_WRITE_ENABLE static int pm8058_rtc0_set_time(struct device *dev, struct rtc_time *tm) { int rc; unsigned long secs = 0; u8 value[4], reg = 0, alarm_enabled = 0, ctrl_reg = 0, i; struct pm8058_rtc *rtc_dd = dev_get_drvdata(dev); ctrl_reg = rtc_dd->rtc_ctrl_reg; rtc_tm_to_time(tm, &secs); value[0] = secs & 0xFF; value[1] = (secs >> 8) & 0xFF; value[2] = (secs >> 16) & 0xFF; value[3] = (secs >> 24) & 0xFF; pr_debug("%s: Seconds value to be written to RTC = %lu\n", __func__, secs); /* Disable alarm before updating RTC */ if (ctrl_reg & PM8058_RTC_ALARM_ENABLE) { alarm_enabled = 1; ctrl_reg &= ~PM8058_RTC_ALARM_ENABLE; rc = pm8058_write(rtc_dd->pm_chip, PM8058_RTC_CTRL, &ctrl_reg, 1); if (rc < 0) { pr_err("%s: PM8058 write failed\n", __func__); return rc; } } /* Write Byte[1], Byte[2], Byte[3], Byte[0] */ reg = 0; rc = pm8058_write(rtc_dd->pm_chip, PM8058_RTC_WRITE_BASE, ®, 1); if (rc < 0) { pr_err("%s: PM8058 write failed\n", __func__); return rc; } for (i = 1; i < 4; i++) { rc = pm8058_write(rtc_dd->pm_chip, PM8058_RTC_WRITE_BASE + i, &value[i], 1); if (rc < 0) { pr_err("%s:Write to RTC registers failed\n", __func__); return rc; } } rc = pm8058_write(rtc_dd->pm_chip, PM8058_RTC_WRITE_BASE, &value[0], 1); if (rc < 0) { pr_err("%s: PM8058 write failed\n", __func__); return rc; } if (alarm_enabled) { ctrl_reg |= PM8058_RTC_ALARM_ENABLE; rc = pm8058_write(rtc_dd->pm_chip, PM8058_RTC_CTRL, &ctrl_reg, 1); if (rc < 0) { pr_err("%s: PM8058 write failed\n", __func__); return rc; } } rtc_dd->rtc_ctrl_reg = ctrl_reg; return 0; } #endif static int pm8058_rtc0_read_time(struct device *dev, struct rtc_time *tm) { int rc; u8 value[4], reg; unsigned long secs = 0; struct pm8058_rtc *rtc_dd = dev_get_drvdata(dev); rc = pm8058_rtc_read_bytes(rtc_dd, value, PM8058_RTC_READ_BASE); if (rc < 0) { pr_err("%s: RTC time read failed\n", __func__); return rc; } /* * Read the LSB again and check if there has been a carry over. * If there is, redo the read operation. */ rc = pm8058_read(rtc_dd->pm_chip, PM8058_RTC_READ_BASE, ®, 1); if (rc < 0) { pr_err("%s: PM8058 read failed\n", __func__); return rc; } if (unlikely(reg < value[0])) { rc = pm8058_rtc_read_bytes(rtc_dd, value, PM8058_RTC_READ_BASE); if (rc < 0) { pr_err("%s: RTC time read failed\n", __func__); return rc; } } secs = value[0] | (value[1] << 8) | (value[2] << 16) | (value[3] << 24); rtc_time_to_tm(secs, tm); rc = rtc_valid_tm(tm); if (rc < 0) { pr_err("%s: Invalid time read from PMIC8058\n", __func__); return rc; } pr_debug("%s: secs = %lu, h::m:s == %d::%d::%d, d/m/y = %d/%d/%d\n", __func__, secs, tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_mday, tm->tm_mon, tm->tm_year); return 0; } static int pm8058_rtc0_set_alarm(struct device *dev, struct rtc_wkalrm *alarm) { int rc; u8 value[4], reg; struct rtc_time rtc_tm; unsigned long secs_alarm, secs_rtc; struct pm8058_rtc *rtc_dd = dev_get_drvdata(dev); reg = rtc_dd->rtc_ctrl_reg; /* Check if the alarm is valid */ rc = rtc_valid_tm(&alarm->time); if (rc < 0) { pr_err("%s: Alarm time invalid\n", __func__); return -EINVAL; } rtc_tm_to_time(&alarm->time, &secs_alarm); /* * Read the current RTC time and verify if the alarm time is in the * past. If yes, return invalid. */ rc = pm8058_rtc0_read_time(dev, &rtc_tm); if (rc) { pr_err("%s: Unable to read RTC time\n", __func__); return -EINVAL; } rtc_tm_to_time(&rtc_tm, &secs_rtc); if (secs_alarm < secs_rtc) { pr_err("%s: Trying to set alarm in the past\n", __func__); return -EINVAL; } value[0] = secs_alarm & 0xFF; value[1] = (secs_alarm >> 8) & 0xFF; value[2] = (secs_alarm >> 16) & 0xFF; value[3] = (secs_alarm >> 24) & 0xFF; rc = pm8058_rtc_write_bytes(rtc_dd, value, PM8058_RTC_ALARM_BASE); if (rc < 0) { pr_err("%s: Alarm could not be set\n", __func__); return rc; } reg = (alarm->enabled) ? (reg | PM8058_RTC_ALARM_ENABLE) : (reg & ~PM8058_RTC_ALARM_ENABLE); rc = pm8058_write(rtc_dd->pm_chip, PM8058_RTC_CTRL, ®, 1); if (rc < 0) { pr_err("%s: PM8058 write failed\n", __func__); return rc; } rtc_dd->rtc_ctrl_reg = reg; pr_debug("%s: Alarm Set for h:r:s=%d:%d:%d, d/m/y=%d/%d/%d\n", __func__, alarm->time.tm_hour, alarm->time.tm_min, alarm->time.tm_sec, alarm->time.tm_mday, alarm->time.tm_mon, alarm->time.tm_year); return 0; } static int pm8058_rtc0_read_alarm(struct device *dev, struct rtc_wkalrm *alarm) { int rc; u8 value[4], reg; unsigned long secs = 0; struct pm8058_rtc *rtc_dd = dev_get_drvdata(dev); reg = rtc_dd->rtc_ctrl_reg; alarm->enabled = !!(reg & PM8058_RTC_ALARM_ENABLE); rc = pm8058_rtc_read_bytes(rtc_dd, value, PM8058_RTC_ALARM_BASE); if (rc < 0) { pr_err("%s: RTC alarm time read failed\n", __func__); return rc; } secs = value[0] | (value[1] << 8) | (value[2] << 16) | (value[3] << 24); rtc_time_to_tm(secs, &alarm->time); rc = rtc_valid_tm(&alarm->time); if (rc < 0) { pr_err("%s: Invalid time read from PMIC8058\n", __func__); return rc; } pr_debug("%s: Alarm set for - h:r:s=%d:%d:%d, d/m/y=%d/%d/%d\n", __func__, alarm->time.tm_hour, alarm->time.tm_min, alarm->time.tm_sec, alarm->time.tm_mday, alarm->time.tm_mon, alarm->time.tm_year); return 0; } static int pm8058_rtc0_alarm_irq_enable(struct device *dev, unsigned int enable) { int rc; struct pm8058_rtc *rtc_dd = dev_get_drvdata(dev); u8 reg; reg = rtc_dd->rtc_ctrl_reg; reg = (enable) ? (reg | PM8058_RTC_ALARM_ENABLE) : (reg & ~PM8058_RTC_ALARM_ENABLE); rc = pm8058_write(rtc_dd->pm_chip, PM8058_RTC_CTRL, ®, 1); if (rc < 0) { pr_err("%s: PM8058 write failed\n", __func__); return rc; } rtc_dd->rtc_ctrl_reg = reg; return rc; } static struct rtc_class_ops pm8058_rtc0_ops = { .read_time = pm8058_rtc0_read_time, .set_alarm = pm8058_rtc0_set_alarm, .read_alarm = pm8058_rtc0_read_alarm, .alarm_irq_enable = pm8058_rtc0_alarm_irq_enable, }; static irqreturn_t pm8058_alarm_trigger(int irq, void *dev_id) { u8 reg; int rc; unsigned long events = 0; struct pm8058_rtc *rtc_dd = dev_id; events = RTC_IRQF | RTC_AF; rtc_update_irq(rtc_dd->rtc0, 1, events); pr_debug("%s: Alarm Triggered !!\n", __func__); /* Clear the alarm enable bit */ reg = rtc_dd->rtc_ctrl_reg; reg &= ~PM8058_RTC_ALARM_ENABLE; rc = pm8058_write(rtc_dd->pm_chip, PM8058_RTC_CTRL, ®, 1); if (rc < 0) { pr_err("%s: PM8058 write failed\n", __func__); goto rtc_alarm_handled; } rtc_dd->rtc_ctrl_reg = reg; /* Clear RTC alarm register */ rc = pm8058_read(rtc_dd->pm_chip, PM8058_RTC_ALARM_CTRL, ®, 1); if (rc < 0) { pr_err("%s: PM8058 read failed\n", __func__); goto rtc_alarm_handled; } reg &= ~PM8058_RTC_ALARM_CLEAR; rc = pm8058_write(rtc_dd->pm_chip, PM8058_RTC_ALARM_CTRL, ®, 1); if (rc < 0) { pr_err("%s: PM8058 write failed\n", __func__); goto rtc_alarm_handled; } rtc_alarm_handled: return IRQ_HANDLED; } static int __devinit pm8058_rtc_probe(struct platform_device *pdev) { int rc; u8 reg, reg_alarm; struct pm8058_rtc *rtc_dd; struct pm8058_chip *pm_chip; pm_chip = dev_get_drvdata(pdev->dev.parent); if (pm_chip == NULL) { pr_err("%s: Invalid driver information\n", __func__); return -ENXIO; } rtc_dd = kzalloc(sizeof(*rtc_dd), GFP_KERNEL); if (rtc_dd == NULL) { pr_err("%s: Unable to allocate memory\n", __func__); return -ENOMEM; } /* Enable runtime PM ops, start in ACTIVE mode */ rc = pm_runtime_set_active(&pdev->dev); if (rc < 0) dev_dbg(&pdev->dev, "unable to set runtime pm state\n"); pm_runtime_enable(&pdev->dev); rtc_dd->rtc_irq = platform_get_irq(pdev, 0); rtc_dd->rtc_alarm_irq = platform_get_irq(pdev, 1); if (!rtc_dd->rtc_alarm_irq || !rtc_dd->rtc_irq) { pr_err("%s: RTC Alarm IRQ absent\n", __func__); rc = -ENXIO; goto fail_rtc_enable; } rtc_dd->pm_chip = pm_chip; rc = pm8058_read(pm_chip, PM8058_RTC_CTRL, ®, 1); if (rc < 0) { pr_err("%s: PM8058 read failed\n", __func__); goto fail_rtc_enable; } /* Enable RTC, ABORT enable and disable alarm */ reg |= ((PM8058_RTC_ENABLE | PM8058_RTC_ABORT_ENABLE) & ~PM8058_RTC_ALARM_ENABLE); rc = pm8058_write(pm_chip, PM8058_RTC_CTRL, ®, 1); if (rc < 0) { pr_err("%s: PM8058 write failed\n", __func__); goto fail_rtc_enable; } /* Clear RTC alarm control register */ rc = pm8058_read(rtc_dd->pm_chip, PM8058_RTC_ALARM_CTRL, ®_alarm, 1); if (rc < 0) { pr_err("%s: PM8058 read failed\n", __func__); goto fail_rtc_enable; } reg_alarm &= ~PM8058_RTC_ALARM_CLEAR; rc = pm8058_write(rtc_dd->pm_chip, PM8058_RTC_ALARM_CTRL, ®_alarm, 1); if (rc < 0) { pr_err("%s: PM8058 write failed\n", __func__); goto fail_rtc_enable; } rtc_dd->rtc_ctrl_reg = reg; #ifdef CONFIG_RTC_PM8058_WRITE_ENABLE pm8058_rtc0_ops.set_time = pm8058_rtc0_set_time; #endif platform_set_drvdata(pdev, rtc_dd); /* Register the RTC device */ rtc_dd->rtc0 = rtc_device_register("pm8058_rtc0", &pdev->dev, &pm8058_rtc0_ops, THIS_MODULE); if (IS_ERR(rtc_dd->rtc0)) { pr_err("%s: RTC device registration failed (%ld)\n", __func__, PTR_ERR(rtc_dd->rtc0)); rc = PTR_ERR(rtc_dd->rtc0); goto fail_rtc_enable; } /* Request the alarm IRQ */ rc = request_threaded_irq(rtc_dd->rtc_alarm_irq, NULL, pm8058_alarm_trigger, IRQF_TRIGGER_RISING, "pm8058_rtc_alarm", rtc_dd); if (rc < 0) { pr_err("%s: Request IRQ failed (%d)\n", __func__, rc); goto fail_req_irq; } device_init_wakeup(&pdev->dev, 1); pr_debug("%s: Probe success !!\n", __func__); return 0; fail_req_irq: rtc_device_unregister(rtc_dd->rtc0); fail_rtc_enable: pm_runtime_set_suspended(&pdev->dev); pm_runtime_disable(&pdev->dev); kfree(rtc_dd); return rc; } #ifdef CONFIG_PM static int pm8058_rtc_resume(struct device *dev) { struct pm8058_rtc *rtc_dd = dev_get_drvdata(dev); if (device_may_wakeup(dev)) disable_irq_wake(rtc_dd->rtc_alarm_irq); return 0; } static int pm8058_rtc_suspend(struct device *dev) { struct pm8058_rtc *rtc_dd = dev_get_drvdata(dev); if (device_may_wakeup(dev)) enable_irq_wake(rtc_dd->rtc_alarm_irq); return 0; } static struct dev_pm_ops pm8058_rtc_pm_ops = { .suspend = pm8058_rtc_suspend, .resume = pm8058_rtc_resume, }; #endif static int __devexit pm8058_rtc_remove(struct platform_device *pdev) { struct pm8058_rtc *rtc_dd = platform_get_drvdata(pdev); pm_runtime_set_suspended(&pdev->dev); pm_runtime_disable(&pdev->dev); device_init_wakeup(&pdev->dev, 0); free_irq(rtc_dd->rtc_alarm_irq, rtc_dd); rtc_device_unregister(rtc_dd->rtc0); kfree(rtc_dd); return 0; } static void pm8058_rtc_shutdown(struct platform_device *pdev) { u8 reg; int rc, i; bool rtc_alarm_powerup = false; struct pm8058_rtc *rtc_dd = platform_get_drvdata(pdev); struct pm8058_rtc_platform_data *pdata = pdev->dev.platform_data; if (pdata != NULL) rtc_alarm_powerup = pdata->rtc_alarm_powerup; if (!rtc_alarm_powerup) { dev_dbg(&pdev->dev, "Disabling alarm interrupts\n"); /* Disable RTC alarms */ reg = rtc_dd->rtc_ctrl_reg; reg &= ~PM8058_RTC_ALARM_ENABLE; rc = pm8058_write(rtc_dd->pm_chip, PM8058_RTC_CTRL, ®, 1); if (rc < 0) { pr_err("%s: PM8058 write failed\n", __func__); return; } /* Clear Alarm register */ reg = 0x0; for (i = 0; i < 4; i++) { rc = pm8058_write(rtc_dd->pm_chip, PM8058_RTC_ALARM_BASE + i, ®, 1); if (rc < 0) { pr_err("%s: PM8058 write failed\n", __func__); return; } } } } static struct platform_driver pm8058_rtc_driver = { .probe = pm8058_rtc_probe, .remove = __devexit_p(pm8058_rtc_remove), .shutdown = pm8058_rtc_shutdown, .driver = { .name = "pm8058-rtc", .owner = THIS_MODULE, #ifdef CONFIG_PM .pm = &pm8058_rtc_pm_ops, #endif }, }; static int __init pm8058_rtc_init(void) { return platform_driver_register(&pm8058_rtc_driver); } static void __exit pm8058_rtc_exit(void) { platform_driver_unregister(&pm8058_rtc_driver); } module_init(pm8058_rtc_init); module_exit(pm8058_rtc_exit); MODULE_ALIAS("platform:pm8058-rtc"); MODULE_DESCRIPTION("PMIC8058 RTC driver"); MODULE_LICENSE("GPL v2");