/* Copyright (c) 2011-2012, Code Aurora Forum. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include #include #include #include #include #include #include #include #include #include #include #include #include #define BMS_CONTROL 0x224 #define BMS_OUTPUT0 0x230 #define BMS_OUTPUT1 0x231 #define BMS_TEST1 0x237 #define ADC_ARB_SECP_CNTRL 0x190 #define ADC_ARB_SECP_AMUX_CNTRL 0x191 #define ADC_ARB_SECP_ANA_PARAM 0x192 #define ADC_ARB_SECP_DIG_PARAM 0x193 #define ADC_ARB_SECP_RSV 0x194 #define ADC_ARB_SECP_DATA1 0x195 #define ADC_ARB_SECP_DATA0 0x196 #define ADC_ARB_BMS_CNTRL 0x18D enum pmic_bms_interrupts { PM8921_BMS_SBI_WRITE_OK, PM8921_BMS_CC_THR, PM8921_BMS_VSENSE_THR, PM8921_BMS_VSENSE_FOR_R, PM8921_BMS_OCV_FOR_R, PM8921_BMS_GOOD_OCV, PM8921_BMS_VSENSE_AVG, PM_BMS_MAX_INTS, }; struct pm8921_soc_params { uint16_t ocv_for_rbatt_raw; uint16_t vsense_for_rbatt_raw; uint16_t vbatt_for_rbatt_raw; uint16_t last_good_ocv_raw; int cc; int ocv_for_rbatt_uv; int vsense_for_rbatt_uv; int vbatt_for_rbatt_uv; int last_good_ocv_uv; }; /** * struct pm8921_bms_chip - * @bms_output_lock: lock to prevent concurrent bms reads * @bms_100_lock: lock to prevent concurrent updates to values that force * 100% charge * */ struct pm8921_bms_chip { struct device *dev; struct dentry *dent; unsigned int r_sense; unsigned int i_test; unsigned int v_failure; unsigned int fcc; struct single_row_lut *fcc_temp_lut; struct single_row_lut *fcc_sf_lut; struct pc_temp_ocv_lut *pc_temp_ocv_lut; struct pc_sf_lut *pc_sf_lut; struct work_struct calib_hkadc_work; struct delayed_work calib_ccadc_work; unsigned int calib_delay_ms; unsigned int revision; unsigned int xoadc_v0625; unsigned int xoadc_v125; unsigned int batt_temp_channel; unsigned int vbat_channel; unsigned int ref625mv_channel; unsigned int ref1p25v_channel; unsigned int batt_id_channel; unsigned int pmic_bms_irq[PM_BMS_MAX_INTS]; DECLARE_BITMAP(enabled_irqs, PM_BMS_MAX_INTS); spinlock_t bms_output_lock; spinlock_t bms_100_lock; struct single_row_lut *adjusted_fcc_temp_lut; unsigned int charging_began; unsigned int start_percent; unsigned int end_percent; uint16_t ocv_reading_at_100; int cc_reading_at_100; int max_voltage_uv; }; static struct pm8921_bms_chip *the_chip; #define DEFAULT_RBATT_MOHMS 128 #define DEFAULT_OCV_MICROVOLTS 3900000 #define DEFAULT_CHARGE_CYCLES 0 static int last_chargecycles = DEFAULT_CHARGE_CYCLES; static int last_charge_increase; module_param(last_chargecycles, int, 0644); module_param(last_charge_increase, int, 0644); static int last_rbatt = -EINVAL; static int last_ocv_uv = -EINVAL; static int last_soc = -EINVAL; static int last_real_fcc_mah = -EINVAL; static int last_real_fcc_batt_temp = -EINVAL; static int bms_ops_set(const char *val, const struct kernel_param *kp) { if (*(int *)kp->arg == -EINVAL) return param_set_int(val, kp); else return 0; } static struct kernel_param_ops bms_param_ops = { .set = bms_ops_set, .get = param_get_int, }; module_param_cb(last_rbatt, &bms_param_ops, &last_rbatt, 0644); module_param_cb(last_ocv_uv, &bms_param_ops, &last_ocv_uv, 0644); module_param_cb(last_soc, &bms_param_ops, &last_soc, 0644); /* * bms_fake_battery is set in setups where a battery emulator is used instead * of a real battery. This makes the bms driver report a different/fake value * regardless of the calculated state of charge. */ static int bms_fake_battery = -EINVAL; module_param(bms_fake_battery, int, 0644); /* bms_start_XXX and bms_end_XXX are read only */ static int bms_start_percent; static int bms_start_ocv_uv; static int bms_start_cc_uah; static int bms_end_percent; static int bms_end_ocv_uv; static int bms_end_cc_uah; static int bms_ro_ops_set(const char *val, const struct kernel_param *kp) { return -EINVAL; } static struct kernel_param_ops bms_ro_param_ops = { .set = bms_ro_ops_set, .get = param_get_int, }; module_param_cb(bms_start_percent, &bms_ro_param_ops, &bms_start_percent, 0644); module_param_cb(bms_start_ocv_uv, &bms_ro_param_ops, &bms_start_ocv_uv, 0644); module_param_cb(bms_start_cc_uah, &bms_ro_param_ops, &bms_start_cc_uah, 0644); module_param_cb(bms_end_percent, &bms_ro_param_ops, &bms_end_percent, 0644); module_param_cb(bms_end_ocv_uv, &bms_ro_param_ops, &bms_end_ocv_uv, 0644); module_param_cb(bms_end_cc_uah, &bms_ro_param_ops, &bms_end_cc_uah, 0644); static int interpolate_fcc(struct pm8921_bms_chip *chip, int batt_temp); static void readjust_fcc_table(void) { struct single_row_lut *temp, *old; int i, fcc, ratio; if (!the_chip->fcc_temp_lut) { pr_err("The static fcc lut table is NULL\n"); return; } temp = kzalloc(sizeof(struct single_row_lut), GFP_KERNEL); if (!temp) { pr_err("Cannot allocate memory for adjusted fcc table\n"); return; } fcc = interpolate_fcc(the_chip, last_real_fcc_batt_temp); temp->cols = the_chip->fcc_temp_lut->cols; for (i = 0; i < the_chip->fcc_temp_lut->cols; i++) { temp->x[i] = the_chip->fcc_temp_lut->x[i]; ratio = div_u64(the_chip->fcc_temp_lut->y[i] * 1000, fcc); temp->y[i] = (ratio * last_real_fcc_mah); temp->y[i] /= 1000; pr_debug("temp=%d, staticfcc=%d, adjfcc=%d, ratio=%d\n", temp->x[i], the_chip->fcc_temp_lut->y[i], temp->y[i], ratio); } old = the_chip->adjusted_fcc_temp_lut; the_chip->adjusted_fcc_temp_lut = temp; kfree(old); } static int bms_last_real_fcc_set(const char *val, const struct kernel_param *kp) { int rc = 0; if (last_real_fcc_mah == -EINVAL) rc = param_set_int(val, kp); if (rc) { pr_err("Failed to set last_real_fcc_mah rc=%d\n", rc); return rc; } if (last_real_fcc_batt_temp != -EINVAL) readjust_fcc_table(); return rc; } static struct kernel_param_ops bms_last_real_fcc_param_ops = { .set = bms_last_real_fcc_set, .get = param_get_int, }; module_param_cb(last_real_fcc_mah, &bms_last_real_fcc_param_ops, &last_real_fcc_mah, 0644); static int bms_last_real_fcc_batt_temp_set(const char *val, const struct kernel_param *kp) { int rc = 0; if (last_real_fcc_batt_temp == -EINVAL) rc = param_set_int(val, kp); if (rc) { pr_err("Failed to set last_real_fcc_batt_temp rc=%d\n", rc); return rc; } if (last_real_fcc_mah != -EINVAL) readjust_fcc_table(); return rc; } static struct kernel_param_ops bms_last_real_fcc_batt_temp_param_ops = { .set = bms_last_real_fcc_batt_temp_set, .get = param_get_int, }; module_param_cb(last_real_fcc_batt_temp, &bms_last_real_fcc_batt_temp_param_ops, &last_real_fcc_batt_temp, 0644); static int pm_bms_get_rt_status(struct pm8921_bms_chip *chip, int irq_id) { return pm8xxx_read_irq_stat(chip->dev->parent, chip->pmic_bms_irq[irq_id]); } static void pm8921_bms_enable_irq(struct pm8921_bms_chip *chip, int interrupt) { if (!__test_and_set_bit(interrupt, chip->enabled_irqs)) { dev_dbg(chip->dev, "%s %d\n", __func__, chip->pmic_bms_irq[interrupt]); enable_irq(chip->pmic_bms_irq[interrupt]); } } static void pm8921_bms_disable_irq(struct pm8921_bms_chip *chip, int interrupt) { if (__test_and_clear_bit(interrupt, chip->enabled_irqs)) { pr_debug("%d\n", chip->pmic_bms_irq[interrupt]); disable_irq_nosync(chip->pmic_bms_irq[interrupt]); } } static int pm_bms_masked_write(struct pm8921_bms_chip *chip, u16 addr, u8 mask, u8 val) { int rc; u8 reg; rc = pm8xxx_readb(chip->dev->parent, addr, ®); if (rc) { pr_err("read failed addr = %03X, rc = %d\n", addr, rc); return rc; } reg &= ~mask; reg |= val & mask; rc = pm8xxx_writeb(chip->dev->parent, addr, reg); if (rc) { pr_err("write failed addr = %03X, rc = %d\n", addr, rc); return rc; } return 0; } #define HOLD_OREG_DATA BIT(1) static int pm_bms_lock_output_data(struct pm8921_bms_chip *chip) { int rc; rc = pm_bms_masked_write(chip, BMS_CONTROL, HOLD_OREG_DATA, HOLD_OREG_DATA); if (rc) { pr_err("couldnt lock bms output rc = %d\n", rc); return rc; } return 0; } static int pm_bms_unlock_output_data(struct pm8921_bms_chip *chip) { int rc; rc = pm_bms_masked_write(chip, BMS_CONTROL, HOLD_OREG_DATA, 0); if (rc) { pr_err("fail to unlock BMS_CONTROL rc = %d\n", rc); return rc; } return 0; } #define SELECT_OUTPUT_DATA 0x1C #define SELECT_OUTPUT_TYPE_SHIFT 2 #define OCV_FOR_RBATT 0x0 #define VSENSE_FOR_RBATT 0x1 #define VBATT_FOR_RBATT 0x2 #define CC_MSB 0x3 #define CC_LSB 0x4 #define LAST_GOOD_OCV_VALUE 0x5 #define VSENSE_AVG 0x6 #define VBATT_AVG 0x7 static int pm_bms_read_output_data(struct pm8921_bms_chip *chip, int type, int16_t *result) { int rc; u8 reg; if (!result) { pr_err("result pointer null\n"); return -EINVAL; } *result = 0; if (type < OCV_FOR_RBATT || type > VBATT_AVG) { pr_err("invalid type %d asked to read\n", type); return -EINVAL; } /* make sure the bms registers are locked */ rc = pm8xxx_readb(chip->dev->parent, BMS_CONTROL, ®); if (rc) { pr_err("fail to read BMS_OUTPUT0 for type %d rc = %d\n", type, rc); return rc; } rc = pm_bms_masked_write(chip, BMS_CONTROL, SELECT_OUTPUT_DATA, type << SELECT_OUTPUT_TYPE_SHIFT); if (rc) { pr_err("fail to select %d type in BMS_CONTROL rc = %d\n", type, rc); return rc; } rc = pm8xxx_readb(chip->dev->parent, BMS_OUTPUT0, ®); if (rc) { pr_err("fail to read BMS_OUTPUT0 for type %d rc = %d\n", type, rc); return rc; } *result = reg; rc = pm8xxx_readb(chip->dev->parent, BMS_OUTPUT1, ®); if (rc) { pr_err("fail to read BMS_OUTPUT1 for type %d rc = %d\n", type, rc); return rc; } *result |= reg << 8; pr_debug("type %d result %x", type, *result); return 0; } #define V_PER_BIT_MUL_FACTOR 97656 #define V_PER_BIT_DIV_FACTOR 1000 #define XOADC_INTRINSIC_OFFSET 0x6000 static int xoadc_reading_to_microvolt(unsigned int a) { if (a <= XOADC_INTRINSIC_OFFSET) return 0; return (a - XOADC_INTRINSIC_OFFSET) * V_PER_BIT_MUL_FACTOR / V_PER_BIT_DIV_FACTOR; } #define XOADC_CALIB_UV 625000 #define VBATT_MUL_FACTOR 3 static int adjust_xo_vbatt_reading(struct pm8921_bms_chip *chip, unsigned int uv) { u64 numerator, denominator; if (uv == 0) return 0; numerator = ((u64)uv - chip->xoadc_v0625) * XOADC_CALIB_UV; denominator = chip->xoadc_v125 - chip->xoadc_v0625; if (denominator == 0) return uv * VBATT_MUL_FACTOR; return (XOADC_CALIB_UV + div_u64(numerator, denominator)) * VBATT_MUL_FACTOR; } #define CC_RESOLUTION_N_V1 1085069 #define CC_RESOLUTION_D_V1 100000 #define CC_RESOLUTION_N_V2 868056 #define CC_RESOLUTION_D_V2 10000 static s64 cc_to_microvolt_v1(s64 cc) { return div_s64(cc * CC_RESOLUTION_N_V1, CC_RESOLUTION_D_V1); } static s64 cc_to_microvolt_v2(s64 cc) { return div_s64(cc * CC_RESOLUTION_N_V2, CC_RESOLUTION_D_V2); } static s64 cc_to_microvolt(struct pm8921_bms_chip *chip, s64 cc) { /* * resolution (the value of a single bit) was changed after revision 2.0 * for more accurate readings */ return (chip->revision < PM8XXX_REVISION_8921_2p0) ? cc_to_microvolt_v1((s64)cc) : cc_to_microvolt_v2((s64)cc); } #define CC_READING_TICKS 55 #define SLEEP_CLK_HZ 32768 #define SECONDS_PER_HOUR 3600 /** * ccmicrovolt_to_nvh - * @cc_uv: coulumb counter converted to uV * * RETURNS: coulumb counter based charge in nVh * (nano Volt Hour) */ static s64 ccmicrovolt_to_nvh(s64 cc_uv) { return div_s64(cc_uv * CC_READING_TICKS * 1000, SLEEP_CLK_HZ * SECONDS_PER_HOUR); } /* returns the signed value read from the hardware */ static int read_cc(struct pm8921_bms_chip *chip, int *result) { int rc; uint16_t msw, lsw; rc = pm_bms_read_output_data(chip, CC_LSB, &lsw); if (rc) { pr_err("fail to read CC_LSB rc = %d\n", rc); return rc; } rc = pm_bms_read_output_data(chip, CC_MSB, &msw); if (rc) { pr_err("fail to read CC_MSB rc = %d\n", rc); return rc; } *result = msw << 16 | lsw; pr_debug("msw = %04x lsw = %04x cc = %d\n", msw, lsw, *result); return 0; } static int convert_vbatt_raw_to_uv(struct pm8921_bms_chip *chip, uint16_t reading, int *result) { *result = xoadc_reading_to_microvolt(reading); pr_debug("raw = %04x vbatt = %u\n", reading, *result); *result = adjust_xo_vbatt_reading(chip, *result); pr_debug("after adj vbatt = %u\n", *result); return 0; } static int convert_vsense_to_uv(struct pm8921_bms_chip *chip, int16_t reading, int *result) { *result = pm8xxx_ccadc_reading_to_microvolt(chip->revision, reading); pr_debug("raw = %04x vsense = %d\n", reading, *result); *result = pm8xxx_cc_adjust_for_gain(*result); pr_debug("after adj vsense = %d\n", *result); return 0; } static int read_vsense_avg(struct pm8921_bms_chip *chip, int *result) { int rc; int16_t reading; rc = pm_bms_read_output_data(chip, VSENSE_AVG, &reading); if (rc) { pr_err("fail to read VSENSE_AVG rc = %d\n", rc); return rc; } convert_vsense_to_uv(chip, reading, result); return 0; } static int linear_interpolate(int y0, int x0, int y1, int x1, int x) { if (y0 == y1 || x == x0) return y0; if (x1 == x0 || x == x1) return y1; return y0 + ((y1 - y0) * (x - x0) / (x1 - x0)); } static int interpolate_single_lut(struct single_row_lut *lut, int x) { int i, result; if (x < lut->x[0]) { pr_debug("x %d less than known range return y = %d lut = %pS\n", x, lut->y[0], lut); return lut->y[0]; } if (x > lut->x[lut->cols - 1]) { pr_debug("x %d more than known range return y = %d lut = %pS\n", x, lut->y[lut->cols - 1], lut); return lut->y[lut->cols - 1]; } for (i = 0; i < lut->cols; i++) if (x <= lut->x[i]) break; if (x == lut->x[i]) { result = lut->y[i]; } else { result = linear_interpolate( lut->y[i - 1], lut->x[i - 1], lut->y[i], lut->x[i], x); } return result; } static int interpolate_fcc(struct pm8921_bms_chip *chip, int batt_temp) { /* batt_temp is in tenths of degC - convert it to degC for lookups */ batt_temp = batt_temp/10; return interpolate_single_lut(chip->fcc_temp_lut, batt_temp); } static int interpolate_fcc_adjusted(struct pm8921_bms_chip *chip, int batt_temp) { /* batt_temp is in tenths of degC - convert it to degC for lookups */ batt_temp = batt_temp/10; return interpolate_single_lut(chip->adjusted_fcc_temp_lut, batt_temp); } static int interpolate_scalingfactor_fcc(struct pm8921_bms_chip *chip, int cycles) { /* * sf table could be null when no battery aging data is available, in * that case return 100% */ if (chip->fcc_sf_lut) return interpolate_single_lut(chip->fcc_sf_lut, cycles); else return 100; } static int interpolate_scalingfactor_pc(struct pm8921_bms_chip *chip, int cycles, int pc) { int i, scalefactorrow1, scalefactorrow2, scalefactor; int rows, cols; int row1 = 0; int row2 = 0; /* * sf table could be null when no battery aging data is available, in * that case return 100% */ if (!chip->pc_sf_lut) return 100; rows = chip->pc_sf_lut->rows; cols = chip->pc_sf_lut->cols; if (pc > chip->pc_sf_lut->percent[0]) { pr_debug("pc %d greater than known pc ranges for sfd\n", pc); row1 = 0; row2 = 0; } if (pc < chip->pc_sf_lut->percent[rows - 1]) { pr_debug("pc %d less than known pc ranges for sf", pc); row1 = rows - 1; row2 = rows - 1; } for (i = 0; i < rows; i++) { if (pc == chip->pc_sf_lut->percent[i]) { row1 = i; row2 = i; break; } if (pc > chip->pc_sf_lut->percent[i]) { row1 = i - 1; row2 = i; break; } } if (cycles < chip->pc_sf_lut->cycles[0]) cycles = chip->pc_sf_lut->cycles[0]; if (cycles > chip->pc_sf_lut->cycles[cols - 1]) cycles = chip->pc_sf_lut->cycles[cols - 1]; for (i = 0; i < cols; i++) if (cycles <= chip->pc_sf_lut->cycles[i]) break; if (cycles == chip->pc_sf_lut->cycles[i]) { scalefactor = linear_interpolate( chip->pc_sf_lut->sf[row1][i], chip->pc_sf_lut->percent[row1], chip->pc_sf_lut->sf[row2][i], chip->pc_sf_lut->percent[row2], pc); return scalefactor; } scalefactorrow1 = linear_interpolate( chip->pc_sf_lut->sf[row1][i - 1], chip->pc_sf_lut->cycles[i - 1], chip->pc_sf_lut->sf[row1][i], chip->pc_sf_lut->cycles[i], cycles); scalefactorrow2 = linear_interpolate( chip->pc_sf_lut->sf[row2][i - 1], chip->pc_sf_lut->cycles[i - 1], chip->pc_sf_lut->sf[row2][i], chip->pc_sf_lut->cycles[i], cycles); scalefactor = linear_interpolate( scalefactorrow1, chip->pc_sf_lut->percent[row1], scalefactorrow2, chip->pc_sf_lut->percent[row2], pc); return scalefactor; } static int is_between(int left, int right, int value) { if (left >= right && left >= value && value >= right) return 1; if (left <= right && left <= value && value <= right) return 1; return 0; } static int interpolate_pc(struct pm8921_bms_chip *chip, int batt_temp, int ocv) { int i, j, pcj, pcj_minus_one, pc; int rows = chip->pc_temp_ocv_lut->rows; int cols = chip->pc_temp_ocv_lut->cols; /* batt_temp is in tenths of degC - convert it to degC for lookups */ batt_temp = batt_temp/10; if (batt_temp < chip->pc_temp_ocv_lut->temp[0]) { pr_debug("batt_temp %d < known temp range for pc\n", batt_temp); batt_temp = chip->pc_temp_ocv_lut->temp[0]; } if (batt_temp > chip->pc_temp_ocv_lut->temp[cols - 1]) { pr_debug("batt_temp %d > known temp range for pc\n", batt_temp); batt_temp = chip->pc_temp_ocv_lut->temp[cols - 1]; } for (j = 0; j < cols; j++) if (batt_temp <= chip->pc_temp_ocv_lut->temp[j]) break; if (batt_temp == chip->pc_temp_ocv_lut->temp[j]) { /* found an exact match for temp in the table */ if (ocv >= chip->pc_temp_ocv_lut->ocv[0][j]) return chip->pc_temp_ocv_lut->percent[0]; if (ocv <= chip->pc_temp_ocv_lut->ocv[rows - 1][j]) return chip->pc_temp_ocv_lut->percent[rows - 1]; for (i = 0; i < rows; i++) { if (ocv >= chip->pc_temp_ocv_lut->ocv[i][j]) { if (ocv == chip->pc_temp_ocv_lut->ocv[i][j]) return chip->pc_temp_ocv_lut->percent[i]; pc = linear_interpolate( chip->pc_temp_ocv_lut->percent[i], chip->pc_temp_ocv_lut->ocv[i][j], chip->pc_temp_ocv_lut->percent[i - 1], chip->pc_temp_ocv_lut->ocv[i - 1][j], ocv); return pc; } } } /* * batt_temp is within temperature for * column j-1 and j */ if (ocv >= chip->pc_temp_ocv_lut->ocv[0][j]) return chip->pc_temp_ocv_lut->percent[0]; if (ocv <= chip->pc_temp_ocv_lut->ocv[rows - 1][j - 1]) return chip->pc_temp_ocv_lut->percent[rows - 1]; pcj_minus_one = 0; pcj = 0; for (i = 0; i < rows-1; i++) { if (pcj == 0 && is_between(chip->pc_temp_ocv_lut->ocv[i][j], chip->pc_temp_ocv_lut->ocv[i+1][j], ocv)) { pcj = linear_interpolate( chip->pc_temp_ocv_lut->percent[i], chip->pc_temp_ocv_lut->ocv[i][j], chip->pc_temp_ocv_lut->percent[i + 1], chip->pc_temp_ocv_lut->ocv[i+1][j], ocv); } if (pcj_minus_one == 0 && is_between(chip->pc_temp_ocv_lut->ocv[i][j-1], chip->pc_temp_ocv_lut->ocv[i+1][j-1], ocv)) { pcj_minus_one = linear_interpolate( chip->pc_temp_ocv_lut->percent[i], chip->pc_temp_ocv_lut->ocv[i][j-1], chip->pc_temp_ocv_lut->percent[i + 1], chip->pc_temp_ocv_lut->ocv[i+1][j-1], ocv); } if (pcj && pcj_minus_one) { pc = linear_interpolate( pcj_minus_one, chip->pc_temp_ocv_lut->temp[j-1], pcj, chip->pc_temp_ocv_lut->temp[j], batt_temp); return pc; } } if (pcj) return pcj; if (pcj_minus_one) return pcj_minus_one; pr_debug("%d ocv wasn't found for temp %d in the LUT returning 100%%", ocv, batt_temp); return 100; } static int read_soc_params_raw(struct pm8921_bms_chip *chip, struct pm8921_soc_params *raw) { unsigned long flags; spin_lock_irqsave(&chip->bms_output_lock, flags); pm_bms_lock_output_data(chip); pm_bms_read_output_data(chip, OCV_FOR_RBATT, &raw->ocv_for_rbatt_raw); pm_bms_read_output_data(chip, VBATT_FOR_RBATT, &raw->vbatt_for_rbatt_raw); pm_bms_read_output_data(chip, VSENSE_FOR_RBATT, &raw->vsense_for_rbatt_raw); pm_bms_read_output_data(chip, LAST_GOOD_OCV_VALUE, &raw->last_good_ocv_raw); read_cc(chip, &raw->cc); pm_bms_unlock_output_data(chip); spin_unlock_irqrestore(&chip->bms_output_lock, flags); convert_vbatt_raw_to_uv(chip, raw->vbatt_for_rbatt_raw, &raw->vbatt_for_rbatt_uv); convert_vbatt_raw_to_uv(chip, raw->ocv_for_rbatt_raw, &raw->ocv_for_rbatt_uv); convert_vbatt_raw_to_uv(chip, raw->last_good_ocv_raw, &raw->last_good_ocv_uv); convert_vsense_to_uv(chip, raw->vsense_for_rbatt_raw, &raw->vsense_for_rbatt_uv); if (raw->last_good_ocv_uv) last_ocv_uv = raw->last_good_ocv_uv; return 0; } static int calculate_rbatt(struct pm8921_bms_chip *chip, struct pm8921_soc_params *raw) { unsigned int r_batt; if (raw->ocv_for_rbatt_uv == 0 || raw->ocv_for_rbatt_uv == raw->vbatt_for_rbatt_uv || raw->vsense_for_rbatt_raw == 0) { pr_debug("rbatt readings unavailable ocv = %d, vbatt = %d," "vsen = %d\n", raw->ocv_for_rbatt_uv, raw->vbatt_for_rbatt_uv, raw->vsense_for_rbatt_raw); return -EINVAL; } r_batt = ((raw->ocv_for_rbatt_uv - raw->vbatt_for_rbatt_uv) * chip->r_sense) / raw->vsense_for_rbatt_uv; last_rbatt = r_batt; pr_debug("r_batt = %umilliOhms", r_batt); return r_batt; } static int calculate_fcc_uah(struct pm8921_bms_chip *chip, int batt_temp, int chargecycles) { int initfcc, result, scalefactor = 0; if (chip->adjusted_fcc_temp_lut == NULL) { initfcc = interpolate_fcc(chip, batt_temp); scalefactor = interpolate_scalingfactor_fcc(chip, chargecycles); /* Multiply the initial FCC value by the scale factor. */ result = (initfcc * scalefactor * 1000) / 100; pr_debug("fcc = %d uAh\n", result); return result; } else { return 1000 * interpolate_fcc_adjusted(chip, batt_temp); } } static int get_battery_uvolts(struct pm8921_bms_chip *chip, int *uvolts) { int rc; struct pm8xxx_adc_chan_result result; rc = pm8xxx_adc_read(chip->vbat_channel, &result); if (rc) { pr_err("error reading adc channel = %d, rc = %d\n", chip->vbat_channel, rc); return rc; } pr_debug("mvolts phy = %lld meas = 0x%llx", result.physical, result.measurement); *uvolts = (int)result.physical; return 0; } static int adc_based_ocv(struct pm8921_bms_chip *chip, int *ocv) { int vbatt, rbatt, ibatt_ua, rc; struct pm8921_soc_params raw; rc = get_battery_uvolts(chip, &vbatt); if (rc) { pr_err("failed to read vbatt from adc rc = %d\n", rc); return rc; } rc = pm8921_bms_get_battery_current(&ibatt_ua); if (rc) { pr_err("failed to read batt current rc = %d\n", rc); return rc; } read_soc_params_raw(chip, &raw); rbatt = calculate_rbatt(the_chip, &raw); if (rbatt < 0) rbatt = (last_rbatt < 0) ? DEFAULT_RBATT_MOHMS : last_rbatt; *ocv = vbatt + (ibatt_ua * rbatt)/1000; return 0; } static int calculate_pc(struct pm8921_bms_chip *chip, int ocv_uv, int batt_temp, int chargecycles) { int pc, scalefactor; pc = interpolate_pc(chip, batt_temp, ocv_uv / 1000); pr_debug("pc = %u for ocv = %dmicroVolts batt_temp = %d\n", pc, ocv_uv, batt_temp); scalefactor = interpolate_scalingfactor_pc(chip, chargecycles, pc); pr_debug("scalefactor = %u batt_temp = %d\n", scalefactor, batt_temp); /* Multiply the initial FCC value by the scale factor. */ pc = (pc * scalefactor) / 100; return pc; } /** * calculate_cc_uah - * @chip: the bms chip pointer * @cc: the cc reading from bms h/w * @val: return value * @coulumb_counter: adjusted coulumb counter for 100% * * RETURNS: in val pointer coulumb counter based charger in uAh * (micro Amp hour) */ static void calculate_cc_uah(struct pm8921_bms_chip *chip, int cc, int *val) { int64_t cc_voltage_uv, cc_nvh, cc_uah; cc_voltage_uv = cc; cc_voltage_uv -= chip->cc_reading_at_100; pr_debug("cc = %d. after subtracting %d cc = %lld\n", cc, chip->cc_reading_at_100, cc_voltage_uv); cc_voltage_uv = cc_to_microvolt(chip, cc_voltage_uv); cc_voltage_uv = pm8xxx_cc_adjust_for_gain(cc_voltage_uv); pr_debug("cc_voltage_uv = %lld microvolts\n", cc_voltage_uv); cc_nvh = ccmicrovolt_to_nvh(cc_voltage_uv); pr_debug("cc_nvh = %lld nano_volt_hour\n", cc_nvh); cc_uah = div_s64(cc_nvh, chip->r_sense); *val = cc_uah; } static int calculate_unusable_charge_uah(struct pm8921_bms_chip *chip, struct pm8921_soc_params *raw, int fcc_uah, int batt_temp, int chargecycles) { int rbatt, voltage_unusable_uv, pc_unusable; rbatt = calculate_rbatt(chip, raw); if (rbatt < 0) { rbatt = (last_rbatt < 0) ? DEFAULT_RBATT_MOHMS : last_rbatt; pr_debug("rbatt unavailable assuming %d\n", rbatt); } /* calculate unusable charge */ voltage_unusable_uv = (rbatt * chip->i_test) + (chip->v_failure * 1000); pc_unusable = calculate_pc(chip, voltage_unusable_uv, batt_temp, chargecycles); pr_debug("rbatt = %umilliOhms unusable_v =%d unusable_pc = %d\n", rbatt, voltage_unusable_uv, pc_unusable); return (fcc_uah * pc_unusable) / 100; } /* calculate remainging charge at the time of ocv */ static int calculate_remaining_charge_uah(struct pm8921_bms_chip *chip, struct pm8921_soc_params *raw, int fcc_uah, int batt_temp, int chargecycles) { int ocv, pc; /* calculate remainging charge */ ocv = 0; if (chip->ocv_reading_at_100 != raw->last_good_ocv_raw) { chip->ocv_reading_at_100 = 0; chip->cc_reading_at_100 = 0; ocv = raw->last_good_ocv_uv; } else { /* * force 100% ocv by selecting the highest voltage the * battery could every reach */ ocv = chip->max_voltage_uv; } if (ocv == 0) { ocv = last_ocv_uv; pr_debug("ocv not available using last_ocv_uv=%d\n", ocv); } pc = calculate_pc(chip, ocv, batt_temp, chargecycles); pr_debug("ocv = %d pc = %d\n", ocv, pc); return (fcc_uah * pc) / 100; } static void calculate_soc_params(struct pm8921_bms_chip *chip, struct pm8921_soc_params *raw, int batt_temp, int chargecycles, int *fcc_uah, int *unusable_charge_uah, int *remaining_charge_uah, int *cc_uah) { unsigned long flags; *fcc_uah = calculate_fcc_uah(chip, batt_temp, chargecycles); pr_debug("FCC = %uuAh batt_temp = %d, cycles = %d\n", *fcc_uah, batt_temp, chargecycles); *unusable_charge_uah = calculate_unusable_charge_uah(chip, raw, *fcc_uah, batt_temp, chargecycles); pr_debug("UUC = %uuAh\n", *unusable_charge_uah); spin_lock_irqsave(&chip->bms_100_lock, flags); /* calculate remainging charge */ *remaining_charge_uah = calculate_remaining_charge_uah(chip, raw, *fcc_uah, batt_temp, chargecycles); pr_debug("RC = %uuAh\n", *remaining_charge_uah); /* calculate cc micro_volt_hour */ calculate_cc_uah(chip, raw->cc, cc_uah); pr_debug("cc_uah = %duAh raw->cc = %x cc = %lld after subtracting %d\n", *cc_uah, raw->cc, (int64_t)raw->cc - chip->cc_reading_at_100, chip->cc_reading_at_100); spin_unlock_irqrestore(&chip->bms_100_lock, flags); } static int calculate_real_fcc_uah(struct pm8921_bms_chip *chip, struct pm8921_soc_params *raw, int batt_temp, int chargecycles, int *ret_fcc_uah) { int fcc_uah, unusable_charge_uah; int remaining_charge_uah; int cc_uah; int real_fcc_uah; calculate_soc_params(chip, raw, batt_temp, chargecycles, &fcc_uah, &unusable_charge_uah, &remaining_charge_uah, &cc_uah); real_fcc_uah = remaining_charge_uah - cc_uah; *ret_fcc_uah = fcc_uah; pr_debug("real_fcc = %d, RC = %d CC = %d fcc = %d\n", real_fcc_uah, remaining_charge_uah, cc_uah, fcc_uah); return real_fcc_uah; } /* * Remaining Usable Charge = remaining_charge (charge at ocv instance) * - coloumb counter charge * - unusable charge (due to battery resistance) * SOC% = (remaining usable charge/ fcc - usable_charge); */ static int calculate_state_of_charge(struct pm8921_bms_chip *chip, struct pm8921_soc_params *raw, int batt_temp, int chargecycles) { int remaining_usable_charge_uah, fcc_uah, unusable_charge_uah; int remaining_charge_uah, soc; int update_userspace = 1; int cc_uah; calculate_soc_params(chip, raw, batt_temp, chargecycles, &fcc_uah, &unusable_charge_uah, &remaining_charge_uah, &cc_uah); /* calculate remaining usable charge */ remaining_usable_charge_uah = remaining_charge_uah - cc_uah - unusable_charge_uah; pr_debug("RUC = %duAh\n", remaining_usable_charge_uah); soc = (remaining_usable_charge_uah * 100) / (fcc_uah - unusable_charge_uah); if (soc > 100) soc = 100; pr_debug("SOC = %u%%\n", soc); if (bms_fake_battery != -EINVAL) { pr_debug("Returning Fake SOC = %d%%\n", bms_fake_battery); return bms_fake_battery; } if (soc < 0) { pr_err("bad rem_usb_chg = %d rem_chg %d," "cc_uah %d, unusb_chg %d\n", remaining_usable_charge_uah, remaining_charge_uah, cc_uah, unusable_charge_uah); pr_err("for bad rem_usb_chg last_ocv_uv = %d" "chargecycles = %d, batt_temp = %d" "fcc = %d soc =%d\n", last_ocv_uv, chargecycles, batt_temp, fcc_uah, soc); update_userspace = 0; soc = 0; } if (last_soc == -EINVAL || soc <= last_soc) { last_soc = update_userspace ? soc : last_soc; return soc; } /* * soc > last_soc * the device must be charging for reporting a higher soc, if not ignore * this soc and continue reporting the last_soc */ if (the_chip->start_percent != -EINVAL) { last_soc = soc; } else { pr_debug("soc = %d reporting last_soc = %d\n", soc, last_soc); soc = last_soc; } return soc; } static void calib_hkadc(struct pm8921_bms_chip *chip) { int voltage, rc; struct pm8xxx_adc_chan_result result; rc = pm8xxx_adc_read(the_chip->ref1p25v_channel, &result); if (rc) { pr_err("ADC failed for 1.25volts rc = %d\n", rc); return; } voltage = xoadc_reading_to_microvolt(result.adc_code); pr_debug("result 1.25v = 0x%x, voltage = %duV adc_meas = %lld\n", result.adc_code, voltage, result.measurement); chip->xoadc_v125 = voltage; rc = pm8xxx_adc_read(the_chip->ref625mv_channel, &result); if (rc) { pr_err("ADC failed for 1.25volts rc = %d\n", rc); return; } voltage = xoadc_reading_to_microvolt(result.adc_code); pr_debug("result 0.625V = 0x%x, voltage = %duV adc_meas = %lld\n", result.adc_code, voltage, result.measurement); chip->xoadc_v0625 = voltage; } static void calibrate_hkadc_work(struct work_struct *work) { struct pm8921_bms_chip *chip = container_of(work, struct pm8921_bms_chip, calib_hkadc_work); calib_hkadc(chip); } static void calibrate_ccadc_work(struct work_struct *work) { struct pm8921_bms_chip *chip = container_of(work, struct pm8921_bms_chip, calib_ccadc_work.work); pm8xxx_calib_ccadc(); schedule_delayed_work(&chip->calib_ccadc_work, round_jiffies_relative(msecs_to_jiffies (chip->calib_delay_ms))); } int pm8921_bms_get_vsense_avg(int *result) { int rc = -EINVAL; unsigned long flags; if (the_chip) { spin_lock_irqsave(&the_chip->bms_output_lock, flags); pm_bms_lock_output_data(the_chip); rc = read_vsense_avg(the_chip, result); pm_bms_unlock_output_data(the_chip); spin_unlock_irqrestore(&the_chip->bms_output_lock, flags); } pr_err("called before initialization\n"); return rc; } EXPORT_SYMBOL(pm8921_bms_get_vsense_avg); int pm8921_bms_get_battery_current(int *result_ua) { unsigned long flags; int vsense; if (!the_chip) { pr_err("called before initialization\n"); return -EINVAL; } if (the_chip->r_sense == 0) { pr_err("r_sense is zero\n"); return -EINVAL; } spin_lock_irqsave(&the_chip->bms_output_lock, flags); pm_bms_lock_output_data(the_chip); read_vsense_avg(the_chip, &vsense); pm_bms_unlock_output_data(the_chip); spin_unlock_irqrestore(&the_chip->bms_output_lock, flags); pr_debug("vsense=%d\n", vsense); /* cast for signed division */ *result_ua = vsense * 1000 / (int)the_chip->r_sense; return 0; } EXPORT_SYMBOL(pm8921_bms_get_battery_current); int pm8921_bms_get_percent_charge(void) { int batt_temp, rc; struct pm8xxx_adc_chan_result result; struct pm8921_soc_params raw; if (!the_chip) { pr_err("called before initialization\n"); return -EINVAL; } rc = pm8xxx_adc_read(the_chip->batt_temp_channel, &result); if (rc) { pr_err("error reading adc channel = %d, rc = %d\n", the_chip->batt_temp_channel, rc); return rc; } pr_debug("batt_temp phy = %lld meas = 0x%llx", result.physical, result.measurement); batt_temp = (int)result.physical; read_soc_params_raw(the_chip, &raw); return calculate_state_of_charge(the_chip, &raw, batt_temp, last_chargecycles); } EXPORT_SYMBOL_GPL(pm8921_bms_get_percent_charge); int pm8921_bms_get_fcc(void) { int batt_temp, rc; struct pm8xxx_adc_chan_result result; if (!the_chip) { pr_err("called before initialization\n"); return -EINVAL; } rc = pm8xxx_adc_read(the_chip->batt_temp_channel, &result); if (rc) { pr_err("error reading adc channel = %d, rc = %d\n", the_chip->batt_temp_channel, rc); return rc; } pr_debug("batt_temp phy = %lld meas = 0x%llx", result.physical, result.measurement); batt_temp = (int)result.physical; return calculate_fcc_uah(the_chip, batt_temp, last_chargecycles); } EXPORT_SYMBOL_GPL(pm8921_bms_get_fcc); void pm8921_bms_charging_began(void) { int batt_temp, rc; struct pm8xxx_adc_chan_result result; struct pm8921_soc_params raw; rc = pm8xxx_adc_read(the_chip->batt_temp_channel, &result); if (rc) { pr_err("error reading adc channel = %d, rc = %d\n", the_chip->batt_temp_channel, rc); return; } pr_debug("batt_temp phy = %lld meas = 0x%llx\n", result.physical, result.measurement); batt_temp = (int)result.physical; read_soc_params_raw(the_chip, &raw); the_chip->start_percent = calculate_state_of_charge(the_chip, &raw, batt_temp, last_chargecycles); bms_start_percent = the_chip->start_percent; bms_start_ocv_uv = raw.last_good_ocv_uv; calculate_cc_uah(the_chip, raw.cc, &bms_start_cc_uah); pr_debug("start_percent = %u%%\n", the_chip->start_percent); } EXPORT_SYMBOL_GPL(pm8921_bms_charging_began); #define DELTA_FCC_PERCENT 3 void pm8921_bms_charging_end(int is_battery_full) { int batt_temp, rc; struct pm8xxx_adc_chan_result result; struct pm8921_soc_params raw; if (the_chip == NULL) return; rc = pm8xxx_adc_read(the_chip->batt_temp_channel, &result); if (rc) { pr_err("error reading adc channel = %d, rc = %d\n", the_chip->batt_temp_channel, rc); return; } pr_debug("batt_temp phy = %lld meas = 0x%llx\n", result.physical, result.measurement); batt_temp = (int)result.physical; read_soc_params_raw(the_chip, &raw); calculate_cc_uah(the_chip, raw.cc, &bms_end_cc_uah); if (is_battery_full) { unsigned long flags; int fcc_uah, new_fcc_uah, delta_fcc_uah; new_fcc_uah = calculate_real_fcc_uah(the_chip, &raw, batt_temp, last_chargecycles, &fcc_uah); delta_fcc_uah = new_fcc_uah - fcc_uah; if (delta_fcc_uah < 0) delta_fcc_uah = -delta_fcc_uah; if (delta_fcc_uah * 100 <= (DELTA_FCC_PERCENT * fcc_uah)) { pr_debug("delta_fcc=%d < %d percent of fcc=%d\n", delta_fcc_uah, DELTA_FCC_PERCENT, fcc_uah); last_real_fcc_mah = new_fcc_uah/1000; last_real_fcc_batt_temp = batt_temp; readjust_fcc_table(); } else { pr_debug("delta_fcc=%d > %d percent of fcc=%d" "will not update real fcc\n", delta_fcc_uah, DELTA_FCC_PERCENT, fcc_uah); } spin_lock_irqsave(&the_chip->bms_100_lock, flags); the_chip->ocv_reading_at_100 = raw.last_good_ocv_raw; the_chip->cc_reading_at_100 = raw.cc; spin_unlock_irqrestore(&the_chip->bms_100_lock, flags); pr_debug("EOC ocv_reading = 0x%x cc = %d\n", the_chip->ocv_reading_at_100, the_chip->cc_reading_at_100); } the_chip->end_percent = calculate_state_of_charge(the_chip, &raw, batt_temp, last_chargecycles); bms_end_percent = the_chip->end_percent; bms_end_ocv_uv = raw.last_good_ocv_uv; if (the_chip->end_percent > the_chip->start_percent) { last_charge_increase += the_chip->end_percent - the_chip->start_percent; if (last_charge_increase > 100) { last_chargecycles++; last_charge_increase = last_charge_increase % 100; } } pr_debug("end_percent = %u%% last_charge_increase = %d" "last_chargecycles = %d\n", the_chip->end_percent, last_charge_increase, last_chargecycles); the_chip->start_percent = -EINVAL; the_chip->end_percent = -EINVAL; } EXPORT_SYMBOL_GPL(pm8921_bms_charging_end); static irqreturn_t pm8921_bms_sbi_write_ok_handler(int irq, void *data) { pr_debug("irq = %d triggered", irq); return IRQ_HANDLED; } static irqreturn_t pm8921_bms_cc_thr_handler(int irq, void *data) { pr_debug("irq = %d triggered", irq); return IRQ_HANDLED; } static irqreturn_t pm8921_bms_vsense_thr_handler(int irq, void *data) { pr_debug("irq = %d triggered", irq); return IRQ_HANDLED; } static irqreturn_t pm8921_bms_vsense_for_r_handler(int irq, void *data) { pr_debug("irq = %d triggered", irq); return IRQ_HANDLED; } static irqreturn_t pm8921_bms_ocv_for_r_handler(int irq, void *data) { struct pm8921_bms_chip *chip = data; pr_debug("irq = %d triggered", irq); schedule_work(&chip->calib_hkadc_work); return IRQ_HANDLED; } static irqreturn_t pm8921_bms_good_ocv_handler(int irq, void *data) { struct pm8921_bms_chip *chip = data; pr_debug("irq = %d triggered", irq); schedule_work(&chip->calib_hkadc_work); return IRQ_HANDLED; } static irqreturn_t pm8921_bms_vsense_avg_handler(int irq, void *data) { pr_debug("irq = %d triggered", irq); return IRQ_HANDLED; } struct pm_bms_irq_init_data { unsigned int irq_id; char *name; unsigned long flags; irqreturn_t (*handler)(int, void *); }; #define BMS_IRQ(_id, _flags, _handler) \ { \ .irq_id = _id, \ .name = #_id, \ .flags = _flags, \ .handler = _handler, \ } struct pm_bms_irq_init_data bms_irq_data[] = { BMS_IRQ(PM8921_BMS_SBI_WRITE_OK, IRQF_TRIGGER_RISING, pm8921_bms_sbi_write_ok_handler), BMS_IRQ(PM8921_BMS_CC_THR, IRQF_TRIGGER_RISING, pm8921_bms_cc_thr_handler), BMS_IRQ(PM8921_BMS_VSENSE_THR, IRQF_TRIGGER_RISING, pm8921_bms_vsense_thr_handler), BMS_IRQ(PM8921_BMS_VSENSE_FOR_R, IRQF_TRIGGER_RISING, pm8921_bms_vsense_for_r_handler), BMS_IRQ(PM8921_BMS_OCV_FOR_R, IRQF_TRIGGER_RISING, pm8921_bms_ocv_for_r_handler), BMS_IRQ(PM8921_BMS_GOOD_OCV, IRQF_TRIGGER_RISING, pm8921_bms_good_ocv_handler), BMS_IRQ(PM8921_BMS_VSENSE_AVG, IRQF_TRIGGER_RISING, pm8921_bms_vsense_avg_handler), }; static void free_irqs(struct pm8921_bms_chip *chip) { int i; for (i = 0; i < PM_BMS_MAX_INTS; i++) if (chip->pmic_bms_irq[i]) { free_irq(chip->pmic_bms_irq[i], NULL); chip->pmic_bms_irq[i] = 0; } } static int __devinit request_irqs(struct pm8921_bms_chip *chip, struct platform_device *pdev) { struct resource *res; int ret, i; ret = 0; bitmap_fill(chip->enabled_irqs, PM_BMS_MAX_INTS); for (i = 0; i < ARRAY_SIZE(bms_irq_data); i++) { res = platform_get_resource_byname(pdev, IORESOURCE_IRQ, bms_irq_data[i].name); if (res == NULL) { pr_err("couldn't find %s\n", bms_irq_data[i].name); goto err_out; } ret = request_irq(res->start, bms_irq_data[i].handler, bms_irq_data[i].flags, bms_irq_data[i].name, chip); if (ret < 0) { pr_err("couldn't request %d (%s) %d\n", res->start, bms_irq_data[i].name, ret); goto err_out; } chip->pmic_bms_irq[bms_irq_data[i].irq_id] = res->start; pm8921_bms_disable_irq(chip, bms_irq_data[i].irq_id); } return 0; err_out: free_irqs(chip); return -EINVAL; } #define EN_BMS_BIT BIT(7) #define EN_PON_HS_BIT BIT(0) static int __devinit pm8921_bms_hw_init(struct pm8921_bms_chip *chip) { int rc; rc = pm_bms_masked_write(chip, BMS_CONTROL, EN_BMS_BIT | EN_PON_HS_BIT, EN_BMS_BIT | EN_PON_HS_BIT); if (rc) { pr_err("failed to enable pon and bms addr = %d %d", BMS_CONTROL, rc); } return 0; } static void check_initial_ocv(struct pm8921_bms_chip *chip) { int ocv_uv, rc; int16_t ocv_raw; /* * Check if a ocv is available in bms hw, * if not compute it here at boot time and save it * in the last_ocv_uv. */ ocv_uv = 0; pm_bms_read_output_data(chip, LAST_GOOD_OCV_VALUE, &ocv_raw); rc = convert_vbatt_raw_to_uv(chip, ocv_raw, &ocv_uv); if (rc || ocv_uv == 0) { rc = adc_based_ocv(chip, &ocv_uv); if (rc) { pr_err("failed to read adc based ocv_uv rc = %d\n", rc); ocv_uv = DEFAULT_OCV_MICROVOLTS; } last_ocv_uv = ocv_uv; } pr_debug("ocv_uv = %d last_ocv_uv = %d\n", ocv_uv, last_ocv_uv); } static int64_t read_battery_id(struct pm8921_bms_chip *chip) { int rc; struct pm8xxx_adc_chan_result result; rc = pm8xxx_adc_read(chip->batt_id_channel, &result); if (rc) { pr_err("error reading batt id channel = %d, rc = %d\n", chip->vbat_channel, rc); return rc; } pr_debug("batt_id phy = %lld meas = 0x%llx\n", result.physical, result.measurement); return result.physical; } #define PALLADIUM_ID_MIN 2500 #define PALLADIUM_ID_MAX 4000 static int set_battery_data(struct pm8921_bms_chip *chip) { int64_t battery_id; battery_id = read_battery_id(chip); if (battery_id < 0) { pr_err("cannot read battery id err = %lld\n", battery_id); return battery_id; } if (is_between(PALLADIUM_ID_MIN, PALLADIUM_ID_MAX, battery_id)) { chip->fcc = palladium_1500_data.fcc; chip->fcc_temp_lut = palladium_1500_data.fcc_temp_lut; chip->fcc_sf_lut = palladium_1500_data.fcc_sf_lut; chip->pc_temp_ocv_lut = palladium_1500_data.pc_temp_ocv_lut; chip->pc_sf_lut = palladium_1500_data.pc_sf_lut; return 0; } else { pr_warn("invalid battery id, palladium 1500 assumed\n"); chip->fcc = palladium_1500_data.fcc; chip->fcc_temp_lut = palladium_1500_data.fcc_temp_lut; chip->fcc_sf_lut = palladium_1500_data.fcc_sf_lut; chip->pc_temp_ocv_lut = palladium_1500_data.pc_temp_ocv_lut; chip->pc_sf_lut = palladium_1500_data.pc_sf_lut; return 0; } } enum { CALC_RBATT, CALC_FCC, CALC_PC, CALC_SOC, CALIB_HKADC, CALIB_CCADC, }; static int test_batt_temp = 5; static int test_chargecycle = 150; static int test_ocv = 3900000; enum { TEST_BATT_TEMP, TEST_CHARGE_CYCLE, TEST_OCV, }; static int get_test_param(void *data, u64 * val) { switch ((int)data) { case TEST_BATT_TEMP: *val = test_batt_temp; break; case TEST_CHARGE_CYCLE: *val = test_chargecycle; break; case TEST_OCV: *val = test_ocv; break; default: return -EINVAL; } return 0; } static int set_test_param(void *data, u64 val) { switch ((int)data) { case TEST_BATT_TEMP: test_batt_temp = (int)val; break; case TEST_CHARGE_CYCLE: test_chargecycle = (int)val; break; case TEST_OCV: test_ocv = (int)val; break; default: return -EINVAL; } return 0; } DEFINE_SIMPLE_ATTRIBUTE(temp_fops, get_test_param, set_test_param, "%llu\n"); static int get_calc(void *data, u64 * val) { int param = (int)data; int ret = 0; struct pm8921_soc_params raw; read_soc_params_raw(the_chip, &raw); *val = 0; /* global irq number passed in via data */ switch (param) { case CALC_RBATT: *val = calculate_rbatt(the_chip, &raw); break; case CALC_FCC: *val = calculate_fcc_uah(the_chip, test_batt_temp, test_chargecycle); break; case CALC_PC: *val = calculate_pc(the_chip, test_ocv, test_batt_temp, test_chargecycle); break; case CALC_SOC: *val = calculate_state_of_charge(the_chip, &raw, test_batt_temp, test_chargecycle); break; case CALIB_HKADC: /* reading this will trigger calibration */ *val = 0; calib_hkadc(the_chip); break; case CALIB_CCADC: /* reading this will trigger calibration */ *val = 0; pm8xxx_calib_ccadc(); break; default: ret = -EINVAL; } return ret; } DEFINE_SIMPLE_ATTRIBUTE(calc_fops, get_calc, NULL, "%llu\n"); static int get_reading(void *data, u64 * val) { int param = (int)data; int ret = 0; struct pm8921_soc_params raw; read_soc_params_raw(the_chip, &raw); *val = 0; /* global irq number passed in via data */ switch (param) { case CC_MSB: case CC_LSB: *val = raw.cc; break; case LAST_GOOD_OCV_VALUE: *val = raw.last_good_ocv_uv; break; case VBATT_FOR_RBATT: *val = raw.vbatt_for_rbatt_uv; break; case VSENSE_FOR_RBATT: *val = raw.vsense_for_rbatt_uv; break; case OCV_FOR_RBATT: *val = raw.ocv_for_rbatt_uv; break; case VSENSE_AVG: read_vsense_avg(the_chip, (uint *)val); break; default: ret = -EINVAL; } return ret; } DEFINE_SIMPLE_ATTRIBUTE(reading_fops, get_reading, NULL, "%lld\n"); static int get_rt_status(void *data, u64 * val) { int i = (int)data; int ret; /* global irq number passed in via data */ ret = pm_bms_get_rt_status(the_chip, i); *val = ret; return 0; } DEFINE_SIMPLE_ATTRIBUTE(rt_fops, get_rt_status, NULL, "%llu\n"); static int get_reg(void *data, u64 * val) { int addr = (int)data; int ret; u8 temp; ret = pm8xxx_readb(the_chip->dev->parent, addr, &temp); if (ret) { pr_err("pm8xxx_readb to %x value = %d errored = %d\n", addr, temp, ret); return -EAGAIN; } *val = temp; return 0; } static int set_reg(void *data, u64 val) { int addr = (int)data; int ret; u8 temp; temp = (u8) val; ret = pm8xxx_writeb(the_chip->dev->parent, addr, temp); if (ret) { pr_err("pm8xxx_writeb to %x value = %d errored = %d\n", addr, temp, ret); return -EAGAIN; } return 0; } DEFINE_SIMPLE_ATTRIBUTE(reg_fops, get_reg, set_reg, "0x%02llx\n"); static void create_debugfs_entries(struct pm8921_bms_chip *chip) { int i; chip->dent = debugfs_create_dir("pm8921-bms", NULL); if (IS_ERR(chip->dent)) { pr_err("pmic bms couldnt create debugfs dir\n"); return; } debugfs_create_file("BMS_CONTROL", 0644, chip->dent, (void *)BMS_CONTROL, ®_fops); debugfs_create_file("BMS_OUTPUT0", 0644, chip->dent, (void *)BMS_OUTPUT0, ®_fops); debugfs_create_file("BMS_OUTPUT1", 0644, chip->dent, (void *)BMS_OUTPUT1, ®_fops); debugfs_create_file("BMS_TEST1", 0644, chip->dent, (void *)BMS_TEST1, ®_fops); debugfs_create_file("test_batt_temp", 0644, chip->dent, (void *)TEST_BATT_TEMP, &temp_fops); debugfs_create_file("test_chargecycle", 0644, chip->dent, (void *)TEST_CHARGE_CYCLE, &temp_fops); debugfs_create_file("test_ocv", 0644, chip->dent, (void *)TEST_OCV, &temp_fops); debugfs_create_file("read_cc", 0644, chip->dent, (void *)CC_MSB, &reading_fops); debugfs_create_file("read_last_good_ocv", 0644, chip->dent, (void *)LAST_GOOD_OCV_VALUE, &reading_fops); debugfs_create_file("read_vbatt_for_rbatt", 0644, chip->dent, (void *)VBATT_FOR_RBATT, &reading_fops); debugfs_create_file("read_vsense_for_rbatt", 0644, chip->dent, (void *)VSENSE_FOR_RBATT, &reading_fops); debugfs_create_file("read_ocv_for_rbatt", 0644, chip->dent, (void *)OCV_FOR_RBATT, &reading_fops); debugfs_create_file("read_vsense_avg", 0644, chip->dent, (void *)VSENSE_AVG, &reading_fops); debugfs_create_file("show_rbatt", 0644, chip->dent, (void *)CALC_RBATT, &calc_fops); debugfs_create_file("show_fcc", 0644, chip->dent, (void *)CALC_FCC, &calc_fops); debugfs_create_file("show_pc", 0644, chip->dent, (void *)CALC_PC, &calc_fops); debugfs_create_file("show_soc", 0644, chip->dent, (void *)CALC_SOC, &calc_fops); debugfs_create_file("calib_hkadc", 0644, chip->dent, (void *)CALIB_HKADC, &calc_fops); debugfs_create_file("calib_ccadc", 0644, chip->dent, (void *)CALIB_CCADC, &calc_fops); for (i = 0; i < ARRAY_SIZE(bms_irq_data); i++) { if (chip->pmic_bms_irq[bms_irq_data[i].irq_id]) debugfs_create_file(bms_irq_data[i].name, 0444, chip->dent, (void *)bms_irq_data[i].irq_id, &rt_fops); } } static int __devinit pm8921_bms_probe(struct platform_device *pdev) { int rc = 0; int vbatt; struct pm8921_bms_chip *chip; const struct pm8921_bms_platform_data *pdata = pdev->dev.platform_data; if (!pdata) { pr_err("missing platform data\n"); return -EINVAL; } chip = kzalloc(sizeof(struct pm8921_bms_chip), GFP_KERNEL); if (!chip) { pr_err("Cannot allocate pm_bms_chip\n"); return -ENOMEM; } spin_lock_init(&chip->bms_output_lock); spin_lock_init(&chip->bms_100_lock); chip->dev = &pdev->dev; chip->r_sense = pdata->r_sense; chip->i_test = pdata->i_test; chip->v_failure = pdata->v_failure; chip->calib_delay_ms = pdata->calib_delay_ms; chip->max_voltage_uv = pdata->max_voltage_uv; chip->start_percent = -EINVAL; chip->end_percent = -EINVAL; rc = set_battery_data(chip); if (rc) { pr_err("%s bad battery data %d\n", __func__, rc); goto free_chip; } chip->batt_temp_channel = pdata->bms_cdata.batt_temp_channel; chip->vbat_channel = pdata->bms_cdata.vbat_channel; chip->ref625mv_channel = pdata->bms_cdata.ref625mv_channel; chip->ref1p25v_channel = pdata->bms_cdata.ref1p25v_channel; chip->batt_id_channel = pdata->bms_cdata.batt_id_channel; chip->revision = pm8xxx_get_revision(chip->dev->parent); INIT_WORK(&chip->calib_hkadc_work, calibrate_hkadc_work); rc = request_irqs(chip, pdev); if (rc) { pr_err("couldn't register interrupts rc = %d\n", rc); goto free_chip; } rc = pm8921_bms_hw_init(chip); if (rc) { pr_err("couldn't init hardware rc = %d\n", rc); goto free_irqs; } platform_set_drvdata(pdev, chip); the_chip = chip; create_debugfs_entries(chip); check_initial_ocv(chip); INIT_DELAYED_WORK(&chip->calib_ccadc_work, calibrate_ccadc_work); /* begin calibration only on chips > 2.0 */ if (chip->revision >= PM8XXX_REVISION_8921_2p0) schedule_delayed_work(&chip->calib_ccadc_work, 0); /* initial hkadc calibration */ schedule_work(&chip->calib_hkadc_work); /* enable the vbatt reading interrupts for scheduling hkadc calib */ pm8921_bms_enable_irq(chip, PM8921_BMS_GOOD_OCV); pm8921_bms_enable_irq(chip, PM8921_BMS_OCV_FOR_R); get_battery_uvolts(chip, &vbatt); pr_info("OK battery_capacity_at_boot=%d volt = %d ocv = %d\n", pm8921_bms_get_percent_charge(), vbatt, last_ocv_uv); return 0; free_irqs: free_irqs(chip); free_chip: kfree(chip); return rc; } static int __devexit pm8921_bms_remove(struct platform_device *pdev) { struct pm8921_bms_chip *chip = platform_get_drvdata(pdev); free_irqs(chip); kfree(chip->adjusted_fcc_temp_lut); platform_set_drvdata(pdev, NULL); the_chip = NULL; kfree(chip); return 0; } static struct platform_driver pm8921_bms_driver = { .probe = pm8921_bms_probe, .remove = __devexit_p(pm8921_bms_remove), .driver = { .name = PM8921_BMS_DEV_NAME, .owner = THIS_MODULE, }, }; static int __init pm8921_bms_init(void) { return platform_driver_register(&pm8921_bms_driver); } static void __exit pm8921_bms_exit(void) { platform_driver_unregister(&pm8921_bms_driver); } late_initcall(pm8921_bms_init); module_exit(pm8921_bms_exit); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("PMIC8921 bms driver"); MODULE_VERSION("1.0"); MODULE_ALIAS("platform:" PM8921_BMS_DEV_NAME);