Files
kernel-tenderloin-3.0/arch/arm/kernel/smp.c
Thomas Gleixner c8bfd7dd2b ARM: smpboot: Enable irqs on secondary CPU after marking it online/active
Patch is the last version from tglx on Oct 7.

Discussion is at: http://comments.gmane.org/gmane.linux.ports.arm.kernel/131919

The original commit message for the first patch version:

Frank Rowand reported:

 I have a consistent (every boot) hang on boot with the RT patches.
 With a few hacks to get console output, I get:

  rcu_preempt_state detected stalls on CPUs/tasks

 I have also replicated the problem on the ARM RealView (in tree) and
 without the RT patches.

 The problem ended up being caused by the allowed cpus mask being set
 to all possible cpus for the ksoftirqd on the secondary processors.
 So the RCU softirq was never executing on the secondary cpu.

 The problem was that ksoftirqd was woken on the secondary processors before
 the secondary processors were online. This led to allowed cpus being set
 to all cpus.

   wake_up_process()
      try_to_wake_up()
         select_task_rq()
            if (... || !cpu_online(cpu))
               select_fallback_rq(task_cpu(p), p)
                  ...
                  /* No more Mr. Nice Guy. */
                  dest_cpu = cpuset_cpus_allowed_fallback(p)
                     do_set_cpus_allowed(p, cpu_possible_mask)
                        #  Thus ksoftirqd can now run on any cpu...
</report>

The reason is that the ARM SMP boot code for the secondary CPUs enables
interrupts before the newly brought up CPU is marked online and
active.

That causes a wakeup of ksoftirqd or a wakeup of any other kernel
thread which is affine to the brought up CPU break that threads
affinity and therefor being scheduled on already online CPUs.

This problem has been observed on x86 before and the only solution is
to mark the CPU online and wait for the CPU active bit before the
point where interrupts are enabled.

Change-Id: If948ef52d434191579e1ca95d18d0c50e91a03b9
Signed-off-by: Dima Zavin <dima@android.com>
2011-10-20 13:45:55 -07:00

691 lines
15 KiB
C

/*
* linux/arch/arm/kernel/smp.c
*
* Copyright (C) 2002 ARM Limited, All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/cache.h>
#include <linux/profile.h>
#include <linux/errno.h>
#include <linux/ftrace.h>
#include <linux/mm.h>
#include <linux/err.h>
#include <linux/cpu.h>
#include <linux/smp.h>
#include <linux/seq_file.h>
#include <linux/irq.h>
#include <linux/percpu.h>
#include <linux/clockchips.h>
#include <linux/completion.h>
#include <asm/atomic.h>
#include <asm/cacheflush.h>
#include <asm/cpu.h>
#include <asm/cputype.h>
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/processor.h>
#include <asm/sections.h>
#include <asm/tlbflush.h>
#include <asm/ptrace.h>
#include <asm/localtimer.h>
/*
* as from 2.5, kernels no longer have an init_tasks structure
* so we need some other way of telling a new secondary core
* where to place its SVC stack
*/
struct secondary_data secondary_data;
enum ipi_msg_type {
IPI_TIMER = 2,
IPI_RESCHEDULE,
IPI_CALL_FUNC,
IPI_CALL_FUNC_SINGLE,
IPI_CPU_STOP,
IPI_CPU_BACKTRACE,
};
int __cpuinit __cpu_up(unsigned int cpu)
{
struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
struct task_struct *idle = ci->idle;
pgd_t *pgd;
int ret;
/*
* Spawn a new process manually, if not already done.
* Grab a pointer to its task struct so we can mess with it
*/
if (!idle) {
idle = fork_idle(cpu);
if (IS_ERR(idle)) {
printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
return PTR_ERR(idle);
}
ci->idle = idle;
} else {
/*
* Since this idle thread is being re-used, call
* init_idle() to reinitialize the thread structure.
*/
init_idle(idle, cpu);
}
/*
* Allocate initial page tables to allow the new CPU to
* enable the MMU safely. This essentially means a set
* of our "standard" page tables, with the addition of
* a 1:1 mapping for the physical address of the kernel.
*/
pgd = pgd_alloc(&init_mm);
if (!pgd)
return -ENOMEM;
if (PHYS_OFFSET != PAGE_OFFSET) {
#ifndef CONFIG_HOTPLUG_CPU
identity_mapping_add(pgd, __pa(__init_begin), __pa(__init_end));
#endif
identity_mapping_add(pgd, __pa(_stext), __pa(_etext));
identity_mapping_add(pgd, __pa(_sdata), __pa(_edata));
}
/*
* We need to tell the secondary core where to find
* its stack and the page tables.
*/
secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
secondary_data.pgdir = virt_to_phys(pgd);
secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
__cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
/*
* Now bring the CPU into our world.
*/
ret = boot_secondary(cpu, idle);
if (ret == 0) {
unsigned long timeout;
/*
* CPU was successfully started, wait for it
* to come online or time out.
*/
timeout = jiffies + HZ;
while (time_before(jiffies, timeout)) {
if (cpu_online(cpu))
break;
udelay(10);
barrier();
}
if (!cpu_online(cpu)) {
pr_crit("CPU%u: failed to come online\n", cpu);
ret = -EIO;
}
} else {
pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
}
secondary_data.stack = NULL;
secondary_data.pgdir = 0;
if (PHYS_OFFSET != PAGE_OFFSET) {
#ifndef CONFIG_HOTPLUG_CPU
identity_mapping_del(pgd, __pa(__init_begin), __pa(__init_end));
#endif
identity_mapping_del(pgd, __pa(_stext), __pa(_etext));
identity_mapping_del(pgd, __pa(_sdata), __pa(_edata));
}
pgd_free(&init_mm, pgd);
return ret;
}
#ifdef CONFIG_HOTPLUG_CPU
static void percpu_timer_stop(void);
/*
* __cpu_disable runs on the processor to be shutdown.
*/
int __cpu_disable(void)
{
unsigned int cpu = smp_processor_id();
struct task_struct *p;
int ret;
ret = platform_cpu_disable(cpu);
if (ret)
return ret;
/*
* Take this CPU offline. Once we clear this, we can't return,
* and we must not schedule until we're ready to give up the cpu.
*/
set_cpu_online(cpu, false);
/*
* OK - migrate IRQs away from this CPU
*/
migrate_irqs();
/*
* Stop the local timer for this CPU.
*/
percpu_timer_stop();
/*
* Flush user cache and TLB mappings, and then remove this CPU
* from the vm mask set of all processes.
*/
flush_cache_all();
local_flush_tlb_all();
read_lock(&tasklist_lock);
for_each_process(p) {
if (p->mm)
cpumask_clear_cpu(cpu, mm_cpumask(p->mm));
}
read_unlock(&tasklist_lock);
return 0;
}
static DECLARE_COMPLETION(cpu_died);
/*
* called on the thread which is asking for a CPU to be shutdown -
* waits until shutdown has completed, or it is timed out.
*/
void __cpu_die(unsigned int cpu)
{
if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
pr_err("CPU%u: cpu didn't die\n", cpu);
return;
}
printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
if (!platform_cpu_kill(cpu))
printk("CPU%u: unable to kill\n", cpu);
}
/*
* Called from the idle thread for the CPU which has been shutdown.
*
* Note that we disable IRQs here, but do not re-enable them
* before returning to the caller. This is also the behaviour
* of the other hotplug-cpu capable cores, so presumably coming
* out of idle fixes this.
*/
void __ref cpu_die(void)
{
unsigned int cpu = smp_processor_id();
idle_task_exit();
local_irq_disable();
mb();
/* Tell __cpu_die() that this CPU is now safe to dispose of */
complete(&cpu_died);
/*
* actual CPU shutdown procedure is at least platform (if not
* CPU) specific.
*/
platform_cpu_die(cpu);
/*
* Do not return to the idle loop - jump back to the secondary
* cpu initialisation. There's some initialisation which needs
* to be repeated to undo the effects of taking the CPU offline.
*/
__asm__("mov sp, %0\n"
" mov fp, #0\n"
" b secondary_start_kernel"
:
: "r" (task_stack_page(current) + THREAD_SIZE - 8));
}
#endif /* CONFIG_HOTPLUG_CPU */
/*
* Called by both boot and secondaries to move global data into
* per-processor storage.
*/
static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
{
struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
cpu_info->loops_per_jiffy = loops_per_jiffy;
}
/*
* This is the secondary CPU boot entry. We're using this CPUs
* idle thread stack, but a set of temporary page tables.
*/
asmlinkage void __cpuinit secondary_start_kernel(void)
{
struct mm_struct *mm = &init_mm;
unsigned int cpu = smp_processor_id();
printk("CPU%u: Booted secondary processor\n", cpu);
/*
* All kernel threads share the same mm context; grab a
* reference and switch to it.
*/
atomic_inc(&mm->mm_count);
current->active_mm = mm;
cpumask_set_cpu(cpu, mm_cpumask(mm));
cpu_switch_mm(mm->pgd, mm);
enter_lazy_tlb(mm, current);
local_flush_tlb_all();
cpu_init();
preempt_disable();
trace_hardirqs_off();
/*
* Give the platform a chance to do its own initialisation.
*/
platform_secondary_init(cpu);
notify_cpu_starting(cpu);
calibrate_delay();
smp_store_cpu_info(cpu);
/*
* OK, now it's safe to let the boot CPU continue. Wait for
* the CPU migration code to notice that the CPU is online
* before we continue.
*/
set_cpu_online(cpu, true);
/*
* Setup the percpu timer for this CPU.
*/
percpu_timer_setup();
while (!cpu_active(cpu))
cpu_relax();
/*
* cpu_active bit is set, so it's safe to enable interrupts
* now.
*/
local_irq_enable();
local_fiq_enable();
/*
* OK, it's off to the idle thread for us
*/
cpu_idle();
}
void __init smp_cpus_done(unsigned int max_cpus)
{
int cpu;
unsigned long bogosum = 0;
for_each_online_cpu(cpu)
bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
printk(KERN_INFO "SMP: Total of %d processors activated "
"(%lu.%02lu BogoMIPS).\n",
num_online_cpus(),
bogosum / (500000/HZ),
(bogosum / (5000/HZ)) % 100);
}
void __init smp_prepare_boot_cpu(void)
{
unsigned int cpu = smp_processor_id();
per_cpu(cpu_data, cpu).idle = current;
}
void __init smp_prepare_cpus(unsigned int max_cpus)
{
unsigned int ncores = num_possible_cpus();
smp_store_cpu_info(smp_processor_id());
/*
* are we trying to boot more cores than exist?
*/
if (max_cpus > ncores)
max_cpus = ncores;
if (max_cpus > 1) {
/*
* Enable the local timer or broadcast device for the
* boot CPU, but only if we have more than one CPU.
*/
percpu_timer_setup();
/*
* Initialise the SCU if there are more than one CPU
* and let them know where to start.
*/
platform_smp_prepare_cpus(max_cpus);
}
}
static void (*smp_cross_call)(const struct cpumask *, unsigned int);
void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
{
smp_cross_call = fn;
}
void arch_send_call_function_ipi_mask(const struct cpumask *mask)
{
smp_cross_call(mask, IPI_CALL_FUNC);
}
void arch_send_call_function_single_ipi(int cpu)
{
smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
}
static const char *ipi_types[NR_IPI] = {
#define S(x,s) [x - IPI_TIMER] = s
S(IPI_TIMER, "Timer broadcast interrupts"),
S(IPI_RESCHEDULE, "Rescheduling interrupts"),
S(IPI_CALL_FUNC, "Function call interrupts"),
S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
S(IPI_CPU_STOP, "CPU stop interrupts"),
S(IPI_CPU_BACKTRACE, "CPU backtrace"),
};
void show_ipi_list(struct seq_file *p, int prec)
{
unsigned int cpu, i;
for (i = 0; i < NR_IPI; i++) {
seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
for_each_present_cpu(cpu)
seq_printf(p, "%10u ",
__get_irq_stat(cpu, ipi_irqs[i]));
seq_printf(p, " %s\n", ipi_types[i]);
}
}
u64 smp_irq_stat_cpu(unsigned int cpu)
{
u64 sum = 0;
int i;
for (i = 0; i < NR_IPI; i++)
sum += __get_irq_stat(cpu, ipi_irqs[i]);
#ifdef CONFIG_LOCAL_TIMERS
sum += __get_irq_stat(cpu, local_timer_irqs);
#endif
return sum;
}
/*
* Timer (local or broadcast) support
*/
static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
static void ipi_timer(void)
{
struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
irq_enter();
evt->event_handler(evt);
irq_exit();
}
#ifdef CONFIG_LOCAL_TIMERS
asmlinkage void __exception_irq_entry do_local_timer(struct pt_regs *regs)
{
struct pt_regs *old_regs = set_irq_regs(regs);
int cpu = smp_processor_id();
if (local_timer_ack()) {
__inc_irq_stat(cpu, local_timer_irqs);
ipi_timer();
}
set_irq_regs(old_regs);
}
void show_local_irqs(struct seq_file *p, int prec)
{
unsigned int cpu;
seq_printf(p, "%*s: ", prec, "LOC");
for_each_present_cpu(cpu)
seq_printf(p, "%10u ", __get_irq_stat(cpu, local_timer_irqs));
seq_printf(p, " Local timer interrupts\n");
}
#endif
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
static void smp_timer_broadcast(const struct cpumask *mask)
{
smp_cross_call(mask, IPI_TIMER);
}
#else
#define smp_timer_broadcast NULL
#endif
static void broadcast_timer_set_mode(enum clock_event_mode mode,
struct clock_event_device *evt)
{
}
static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
{
evt->name = "dummy_timer";
evt->features = CLOCK_EVT_FEAT_ONESHOT |
CLOCK_EVT_FEAT_PERIODIC |
CLOCK_EVT_FEAT_DUMMY;
evt->rating = 400;
evt->mult = 1;
evt->set_mode = broadcast_timer_set_mode;
clockevents_register_device(evt);
}
void __cpuinit percpu_timer_setup(void)
{
unsigned int cpu = smp_processor_id();
struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
evt->cpumask = cpumask_of(cpu);
evt->broadcast = smp_timer_broadcast;
if (local_timer_setup(evt))
broadcast_timer_setup(evt);
}
#ifdef CONFIG_HOTPLUG_CPU
/*
* The generic clock events code purposely does not stop the local timer
* on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
* manually here.
*/
static void percpu_timer_stop(void)
{
unsigned int cpu = smp_processor_id();
struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
}
#endif
static DEFINE_SPINLOCK(stop_lock);
/*
* ipi_cpu_stop - handle IPI from smp_send_stop()
*/
static void ipi_cpu_stop(unsigned int cpu)
{
if (system_state == SYSTEM_BOOTING ||
system_state == SYSTEM_RUNNING) {
spin_lock(&stop_lock);
printk(KERN_CRIT "CPU%u: stopping\n", cpu);
dump_stack();
spin_unlock(&stop_lock);
}
set_cpu_online(cpu, false);
local_fiq_disable();
local_irq_disable();
while (1)
cpu_relax();
}
static cpumask_t backtrace_mask;
static DEFINE_RAW_SPINLOCK(backtrace_lock);
/* "in progress" flag of arch_trigger_all_cpu_backtrace */
static unsigned long backtrace_flag;
void smp_send_all_cpu_backtrace(void)
{
unsigned int this_cpu = smp_processor_id();
int i;
if (test_and_set_bit(0, &backtrace_flag))
/*
* If there is already a trigger_all_cpu_backtrace() in progress
* (backtrace_flag == 1), don't output double cpu dump infos.
*/
return;
cpumask_copy(&backtrace_mask, cpu_online_mask);
cpu_clear(this_cpu, backtrace_mask);
pr_info("Backtrace for cpu %d (current):\n", this_cpu);
dump_stack();
pr_info("\nsending IPI to all other CPUs:\n");
smp_cross_call(&backtrace_mask, IPI_CPU_BACKTRACE);
/* Wait for up to 10 seconds for all other CPUs to do the backtrace */
for (i = 0; i < 10 * 1000; i++) {
if (cpumask_empty(&backtrace_mask))
break;
mdelay(1);
}
clear_bit(0, &backtrace_flag);
smp_mb__after_clear_bit();
}
/*
* ipi_cpu_backtrace - handle IPI from smp_send_all_cpu_backtrace()
*/
static void ipi_cpu_backtrace(unsigned int cpu, struct pt_regs *regs)
{
if (cpu_isset(cpu, backtrace_mask)) {
raw_spin_lock(&backtrace_lock);
pr_warning("IPI backtrace for cpu %d\n", cpu);
show_regs(regs);
raw_spin_unlock(&backtrace_lock);
cpu_clear(cpu, backtrace_mask);
}
}
/*
* Main handler for inter-processor interrupts
*/
asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
{
unsigned int cpu = smp_processor_id();
struct pt_regs *old_regs = set_irq_regs(regs);
if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI)
__inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]);
switch (ipinr) {
case IPI_TIMER:
ipi_timer();
break;
case IPI_RESCHEDULE:
scheduler_ipi();
break;
case IPI_CALL_FUNC:
generic_smp_call_function_interrupt();
break;
case IPI_CALL_FUNC_SINGLE:
generic_smp_call_function_single_interrupt();
break;
case IPI_CPU_STOP:
ipi_cpu_stop(cpu);
break;
case IPI_CPU_BACKTRACE:
ipi_cpu_backtrace(cpu, regs);
break;
default:
printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
cpu, ipinr);
break;
}
set_irq_regs(old_regs);
}
void smp_send_reschedule(int cpu)
{
smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
}
void smp_send_stop(void)
{
unsigned long timeout;
if (num_online_cpus() > 1) {
cpumask_t mask = cpu_online_map;
cpu_clear(smp_processor_id(), mask);
smp_cross_call(&mask, IPI_CPU_STOP);
}
/* Wait up to one second for other CPUs to stop */
timeout = USEC_PER_SEC;
while (num_online_cpus() > 1 && timeout--)
udelay(1);
if (num_online_cpus() > 1)
pr_warning("SMP: failed to stop secondary CPUs\n");
}
/*
* not supported here
*/
int setup_profiling_timer(unsigned int multiplier)
{
return -EINVAL;
}