Files
kernel-tenderloin-3.0/drivers/input/misc/lsm303dlh_acc_sysfs.c
2012-02-26 16:43:05 -06:00

1453 lines
37 KiB
C

/******************** (C) COPYRIGHT 2010 STMicroelectronics ********************
*
* File Name : lsm303dlh_acc.c
* Authors : MSH - Motion Mems BU - Application Team
* : Carmine Iascone (carmine.iascone@st.com)
* : Matteo Dameno (matteo.dameno@st.com)
* : Both authors are willing to be considered the contact
* : and update points for the driver.
* Version : V 1.7.0
* Date : 2011/03/02
* Description : LSM303DLH 6D module sensor API
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* THE PRESENT SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES
* OR CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED, FOR THE SOLE
* PURPOSE TO SUPPORT YOUR APPLICATION DEVELOPMENT.
* AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT,
* INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE
* CONTENT OF SUCH SOFTWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING
* INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*
******************************************************************************
Revision 1.5.0 2010/09/05:
lsm303dlh_acc_device_power_off now calling CTRL_REG1 to set power off
manages 2 interrupts;
correction to update_g_range;
modified_get_acceleration_data function
modified update_odr function and lsm303dlh_acc_odr_table;
don't support ioclt;
supports sysfs;
Revision 1.6.0 2011/02/28
checks for availability of interrupts pins
Revision 1.7.0 2011/03/02
adds self test enable/disable
******************************************************************************/
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/i2c.h>
#include <linux/input.h>
#include <linux/uaccess.h>
#include <linux/workqueue.h>
#include <linux/irq.h>
#include <linux/gpio.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/i2c/lsm303dlh.h>
#define DEBUG 1
#define G_MAX 8000
#define SENSITIVITY_2G 1 /** mg/LSB */
#define SENSITIVITY_4G 2 /** mg/LSB */
#define SENSITIVITY_8G 4 /** mg/LSB */
#define AXISDATA_REG 0x28
#define WHOAMI_LSM303DLH_ACC 0x32 /* Expctd content for WAI */
/* CONTROL REGISTERS */
#define WHO_AM_I 0x0F /* WhoAmI register */
#define CTRL_REG1 0x20 /* */
#define CTRL_REG2 0x21 /* */
#define CTRL_REG3 0x22 /* */
#define CTRL_REG4 0x23 /* */
#define CTRL_REG5 0x24 /* */
#define INT_CFG1 0x30 /* interrupt 1 config */
#define INT_SRC1 0x31 /* interrupt 1 source */
#define INT_THS1 0x32 /* interrupt 1 threshold */
#define INT_DUR1 0x33 /* interrupt 1 duration */
#define INT_CFG2 0x34 /* interrupt 2 config */
#define INT_SRC2 0x35 /* interrupt 2 source */
#define INT_THS2 0x36 /* interrupt 2 threshold */
#define INT_DUR2 0x37 /* interrupt 2 duration */
/* end CONTROL REGISTRES */
#define LSM303DLH_ACC_ENABLE_ALL_AXES 0x07
#define LSM303DLH_SELFTEST_EN 0x02
#define LSM303DLH_SELFTEST_DIS 0x00
#define LSM303DLH_SELFTEST_POS 0x00
#define LSM303DLH_SELFTEST_NEG 0x08
/* Accelerometer output data rate */
#define LSM303DLH_ACC_ODRHALF 0x40 /* 0.5Hz output data rate */
#define LSM303DLH_ACC_ODR1 0x60 /* 1Hz output data rate */
#define LSM303DLH_ACC_ODR2 0x80 /* 2Hz output data rate */
#define LSM303DLH_ACC_ODR5 0xA0 /* 5Hz output data rate */
#define LSM303DLH_ACC_ODR10 0xC0 /* 10Hz output data rate */
#define LSM303DLH_ACC_ODR50 0x00 /* 50Hz output data rate */
#define LSM303DLH_ACC_ODR100 0x08 /* 100Hz output data rate */
#define LSM303DLH_ACC_ODR400 0x10 /* 400Hz output data rate */
#define LSM303DLH_ACC_ODR1000 0x18 /* 1000Hz output data rate */
#define FUZZ 0
#define FLAT 0
#define I2C_RETRY_DELAY 5
#define I2C_RETRIES 5
#define I2C_AUTO_INCREMENT 0x80
/* RESUME STATE INDICES */
#define RES_CTRL_REG1 0
#define RES_CTRL_REG2 1
#define RES_CTRL_REG3 2
#define RES_CTRL_REG4 3
#define RES_CTRL_REG5 4
#define RES_REFERENCE 5
#define RES_INT_CFG1 6
#define RES_INT_THS1 7
#define RES_INT_DUR1 8
#define RES_INT_CFG2 9
#define RES_INT_THS2 10
#define RES_INT_DUR2 11
#define RESUME_ENTRIES 12
/* end RESUME STATE INDICES */
static struct {
unsigned int cutoff_ms;
unsigned int mask;
} lsm303dlh_acc_odr_table[] = {
{1, LSM303DLH_ACC_PM_NORMAL | LSM303DLH_ACC_ODR1000},
{3, LSM303DLH_ACC_PM_NORMAL | LSM303DLH_ACC_ODR400},
{10, LSM303DLH_ACC_PM_NORMAL | LSM303DLH_ACC_ODR100},
{20, LSM303DLH_ACC_PM_NORMAL | LSM303DLH_ACC_ODR50},
/* low power settings, max low pass filter cut-off freq */
{100, LSM303DLH_ACC_ODR10 | LSM303DLH_ACC_ODR1000},
{200, LSM303DLH_ACC_ODR5 | LSM303DLH_ACC_ODR1000},
{5000, LSM303DLH_ACC_ODR2 | LSM303DLH_ACC_ODR1000 },
{1000, LSM303DLH_ACC_ODR1 | LSM303DLH_ACC_ODR1000 },
{2000, LSM303DLH_ACC_ODRHALF | LSM303DLH_ACC_ODR1000 },
};
struct lsm303dlh_acc_data {
struct i2c_client *client;
struct lsm303dlh_acc_platform_data *pdata;
struct mutex lock;
struct delayed_work input_work;
struct input_dev *input_dev;
int hw_initialized;
/* hw_working=-1 means not tested yet */
int hw_working;
int selftest_enabled;
atomic_t enabled;
int on_before_suspend;
u8 sensitivity;
u8 resume_state[RESUME_ENTRIES];
int irq1;
struct work_struct irq1_work;
struct workqueue_struct *irq1_work_queue;
int irq2;
struct work_struct irq2_work;
struct workqueue_struct *irq2_work_queue;
#ifdef DEBUG
u8 reg_addr;
#endif
};
static int lsm303dlh_acc_i2c_read(struct lsm303dlh_acc_data *acc,
u8 *buf, int len)
{
int err;
int tries = 0;
struct i2c_msg msgs[] = {
{
.addr = acc->client->addr,
.flags = acc->client->flags & I2C_M_TEN,
.len = 1,
.buf = buf,
},
{
.addr = acc->client->addr,
.flags = (acc->client->flags & I2C_M_TEN) | I2C_M_RD,
.len = len,
.buf = buf,
},
};
do {
err = i2c_transfer(acc->client->adapter, msgs, 2);
if (err != 2)
msleep_interruptible(I2C_RETRY_DELAY);
} while ((err != 2) && (++tries < I2C_RETRIES));
if (err != 2) {
dev_err(&acc->client->dev, "read transfer error\n");
return -EIO;
}
return 0;
}
static int lsm303dlh_acc_i2c_write(struct lsm303dlh_acc_data *acc,
u8 *buf, int len)
{
int err;
int tries = 0;
struct i2c_msg msgs[] = {
{
.addr = acc->client->addr,
.flags = acc->client->flags & I2C_M_TEN,
.len = len + 1,
.buf = buf,
},
};
do {
err = i2c_transfer(acc->client->adapter, msgs, 1);
if (err != 1)
msleep_interruptible(I2C_RETRY_DELAY);
} while ((err != 1) && (++tries < I2C_RETRIES));
if (err != 1) {
dev_err(&acc->client->dev, "write transfer error\n");
return -EIO;
}
return err;
}
static int lsm303dlh_acc_hw_init(struct lsm303dlh_acc_data *acc)
{
int err = -1;
u8 buf[6];
printk(KERN_INFO "%s: hw init start\n", LSM303DLH_ACC_DEV_NAME);
buf[0] = WHO_AM_I;
err = lsm303dlh_acc_i2c_read(acc, buf, 1);
if (err < 0){
dev_warn(&acc->client->dev, "Error reading WHO_AM_I: is device "
"available/working?\n");
goto err_firstread;
} else
acc->hw_working = 1;
if (buf[0] != WHOAMI_LSM303DLH_ACC) {
dev_err(&acc->client->dev,
"device unknown. Expected: 0x%x,"
" Replies: 0x%x\n", WHOAMI_LSM303DLH_ACC, buf[0]);
err = -1; /* choose the right coded error */
goto err_unknown_device;
}
buf[0] = CTRL_REG1;
buf[1] = acc->resume_state[RES_CTRL_REG1];
err = lsm303dlh_acc_i2c_write(acc, buf, 1);
if (err < 0)
goto err_resume_state;
buf[0] = (I2C_AUTO_INCREMENT | INT_THS1);
buf[1] = acc->resume_state[RES_INT_THS1];
buf[2] = acc->resume_state[RES_INT_DUR1];
err = lsm303dlh_acc_i2c_write(acc, buf, 2);
if (err < 0)
goto err_resume_state;
buf[0] = INT_CFG1;
buf[1] = acc->resume_state[RES_INT_CFG1];
err = lsm303dlh_acc_i2c_write(acc, buf, 1);
if (err < 0)
goto err_resume_state;
buf[0] = (I2C_AUTO_INCREMENT | INT_THS2);
buf[1] = acc->resume_state[RES_INT_THS2];
buf[2] = acc->resume_state[RES_INT_DUR2];
err = lsm303dlh_acc_i2c_write(acc, buf, 2);
if (err < 0)
goto err_resume_state;
buf[0] = INT_CFG2;
buf[1] = acc->resume_state[RES_INT_CFG2];
err = lsm303dlh_acc_i2c_write(acc, buf, 1);
if (err < 0)
goto err_resume_state;
buf[0] = (I2C_AUTO_INCREMENT | CTRL_REG2);
buf[1] = acc->resume_state[RES_CTRL_REG2];
buf[2] = acc->resume_state[RES_CTRL_REG3];
buf[3] = acc->resume_state[RES_CTRL_REG4];
buf[4] = acc->resume_state[RES_CTRL_REG5];
err = lsm303dlh_acc_i2c_write(acc, buf, 4);
if (err < 0)
goto err_resume_state;
acc->hw_initialized = 1;
printk(KERN_INFO "%s: hw init done\n", LSM303DLH_ACC_DEV_NAME);
return 0;
err_firstread:
acc->hw_working = 0;
err_unknown_device:
err_resume_state:
acc->hw_initialized = 0;
dev_err(&acc->client->dev, "hw init error 0x%x,0x%x: %d\n", buf[0],
buf[1], err);
return err;
}
static void lsm303dlh_acc_device_power_off(struct lsm303dlh_acc_data *acc)
{
int err;
u8 buf[2] = { CTRL_REG1, LSM303DLH_ACC_PM_OFF };
err = lsm303dlh_acc_i2c_write(acc, buf, 1);
if (err < 0)
dev_err(&acc->client->dev, "soft power off failed: %d\n", err);
if (acc->pdata->power_off) {
if(acc->pdata->gpio_int1 >= 0)
disable_irq_nosync(acc->irq1);
if(acc->pdata->gpio_int2 >= 0)
disable_irq_nosync(acc->irq2);
acc->pdata->power_off();
acc->hw_initialized = 0;
}
if (acc->hw_initialized) {
if(acc->pdata->gpio_int1 >= 0)
disable_irq_nosync(acc->irq1);
if(acc->pdata->gpio_int2 >= 0)
disable_irq_nosync(acc->irq2);
acc->hw_initialized = 0;
}
}
static int lsm303dlh_acc_device_power_on(struct lsm303dlh_acc_data *acc)
{
int err = -1;
if (acc->pdata->power_on) {
err = acc->pdata->power_on();
if (err < 0) {
dev_err(&acc->client->dev,
"power_on failed: %d\n", err);
return err;
}
if(acc->pdata->gpio_int1 >= 0)
enable_irq(acc->irq1);
if(acc->pdata->gpio_int2 >= 0)
enable_irq(acc->irq2);
}
if (!acc->hw_initialized) {
err = lsm303dlh_acc_hw_init(acc);
if (acc->hw_working == 1 && err < 0) {
lsm303dlh_acc_device_power_off(acc);
return err;
}
}
if (acc->hw_initialized) {
if(acc->pdata->gpio_int1 >= 0)
enable_irq(acc->irq1);
if(acc->pdata->gpio_int2 >= 0)
enable_irq(acc->irq2);
}
return 0;
}
static irqreturn_t lsm303dlh_acc_isr1(int irq, void *dev)
{
struct lsm303dlh_acc_data *acc = dev;
disable_irq_nosync(irq);
queue_work(acc->irq1_work_queue, &acc->irq1_work);
printk(KERN_INFO "%s: isr1 queued\n", LSM303DLH_ACC_DEV_NAME);
return IRQ_HANDLED;
}
static irqreturn_t lsm303dlh_acc_isr2(int irq, void *dev)
{
struct lsm303dlh_acc_data *acc = dev;
disable_irq_nosync(irq);
queue_work(acc->irq2_work_queue, &acc->irq2_work);
printk(KERN_INFO "%s: isr2 queued\n", LSM303DLH_ACC_DEV_NAME);
return IRQ_HANDLED;
}
static void lsm303dlh_acc_irq1_work_func(struct work_struct *work)
{
struct lsm303dlh_acc_data *acc =
container_of(work, struct lsm303dlh_acc_data, irq1_work);
/* TODO add interrupt service procedure.
ie:lsm303dlh_acc_get_int1_source(acc); */
;
/* */
printk(KERN_INFO "%s: IRQ1 triggered\n", LSM303DLH_ACC_DEV_NAME);
//exit:
enable_irq(acc->irq1);
}
static void lsm303dlh_acc_irq2_work_func(struct work_struct *work)
{
struct lsm303dlh_acc_data *acc =
container_of(work, struct lsm303dlh_acc_data, irq2_work);
/* TODO add interrupt service procedure.
ie:lsm303dlh_acc_get_tap_source(acc); */
;
/* */
printk(KERN_INFO "%s: IRQ2 triggered\n", LSM303DLH_ACC_DEV_NAME);
//exit:
enable_irq(acc->irq2);
}
int lsm303dlh_acc_update_g_range(struct lsm303dlh_acc_data *acc, u8 new_g_range)
{
int err = -1;
u8 sensitivity;
u8 buf[2];
u8 updated_val;
u8 init_val;
u8 new_val;
u8 mask = LSM303DLH_ACC_FS_MASK;
switch (new_g_range) {
case LSM303DLH_ACC_G_2G:
sensitivity = SENSITIVITY_2G;
break;
case LSM303DLH_ACC_G_4G:
sensitivity = SENSITIVITY_4G;
break;
case LSM303DLH_ACC_G_8G:
sensitivity = SENSITIVITY_8G;
break;
default:
dev_err(&acc->client->dev, "invalid g range requested: %u\n",
new_g_range);
return -EINVAL;
}
if (atomic_read(&acc->enabled)) {
/* Set configuration register 4, which contains g range setting
* NOTE: this is a straight overwrite because this driver does
* not use any of the other configuration bits in this
* register. Should this become untrue, we will have to read
* out the value and only change the relevant bits --XX----
* (marked by X) */
buf[0] = CTRL_REG4;
err = lsm303dlh_acc_i2c_read(acc, buf, 1);
if (err < 0)
goto error;
init_val = buf[0];
acc->resume_state[RES_CTRL_REG4] = init_val;
new_val = new_g_range;
updated_val = ((mask & new_val) | ((~mask) & init_val));
buf[1] = updated_val;
buf[0] = CTRL_REG4;
err = lsm303dlh_acc_i2c_write(acc, buf, 1);
if (err < 0)
goto error;
acc->resume_state[RES_CTRL_REG4] = updated_val;
acc->sensitivity = sensitivity;
}
return err;
error:
dev_err(&acc->client->dev, "update g range failed 0x%x,0x%x: %d\n",
buf[0], buf[1], err);
return err;
}
int lsm303dlh_acc_update_odr(struct lsm303dlh_acc_data *acc,
int poll_interval_ms)
{
int err = -1;
int i;
u8 config[2];
/* Following, looks for the longest possible odr interval scrolling the
* odr_table vector from the end (shortest interval) backward (longest
* interval), to support the poll_interval requested by the system.
* It must be the longest interval lower then the poll interval.*/
for (i = ARRAY_SIZE(lsm303dlh_acc_odr_table) - 1; i >= 0; i--) {
if (lsm303dlh_acc_odr_table[i].cutoff_ms <= poll_interval_ms)
break;
}
config[1] = lsm303dlh_acc_odr_table[i].mask;
config[1] |= LSM303DLH_ACC_ENABLE_ALL_AXES;
/* If device is currently enabled, we need to write new
* configuration out to it */
if (atomic_read(&acc->enabled)) {
config[0] = CTRL_REG1;
err = lsm303dlh_acc_i2c_write(acc, config, 1);
if (err < 0)
goto error;
acc->resume_state[RES_CTRL_REG1] = config[1];
}
return err;
error:
dev_err(&acc->client->dev, "update odr failed 0x%x,0x%x: %d\n",
config[0], config[1], err);
return err;
}
static int lsm303dlh_acc_register_write(struct lsm303dlh_acc_data *acc, u8 *buf,
u8 reg_address, u8 new_value)
{
int err = -1;
/* Sets configuration register at reg_address
* NOTE: this is a straight overwrite */
buf[0] = reg_address;
buf[1] = new_value;
err = lsm303dlh_acc_i2c_write(acc, buf, 1);
if (err < 0)
return err;
return err;
}
static int lsm303dlh_acc_register_read(struct lsm303dlh_acc_data *acc, u8 *buf,
u8 reg_address)
{
int err = -1;
buf[0] = (reg_address);
err = lsm303dlh_acc_i2c_read(acc, buf, 1);
return err;
}
static int lsm303dlh_acc_register_update(struct lsm303dlh_acc_data *acc,
u8 *buf, u8 reg_address, u8 mask, u8 new_bit_values)
{
int err = -1;
u8 init_val;
u8 updated_val;
err = lsm303dlh_acc_register_read(acc, buf, reg_address);
if (!(err < 0)) {
init_val = buf[1];
updated_val = ((mask & new_bit_values) | ((~mask) & init_val));
err = lsm303dlh_acc_register_write(acc, buf, reg_address,
updated_val);
}
return err;
}
static int lsm303dlh_acc_selftest(struct lsm303dlh_acc_data *acc, u8 enable)
{
int err = -1;
u8 buf[2]={0x00,0x00};
char reg_address, mask, bit_values;
reg_address = CTRL_REG4;
mask = 0x0A;
if (enable > 0)
bit_values = LSM303DLH_SELFTEST_EN |
LSM303DLH_SELFTEST_POS;
else
bit_values = LSM303DLH_SELFTEST_DIS |
LSM303DLH_SELFTEST_POS;
if (atomic_read(&acc->enabled)) {
mutex_lock(&acc->lock);
err = lsm303dlh_acc_register_update(acc, buf, reg_address,
mask, bit_values);
acc->selftest_enabled = enable;
mutex_unlock(&acc->lock);
if (err < 0)
return err;
acc->resume_state[RES_CTRL_REG4] = ((mask & bit_values) |
( ~mask & acc->resume_state[RES_CTRL_REG4]));
}
return err;
}
static int lsm303dlh_acc_get_acceleration_data(struct lsm303dlh_acc_data *acc,
int *xyz)
{
int err = -1;
/* Data bytes from hardware xL, xH, yL, yH, zL, zH */
u8 acc_data[6];
/* x,y,z hardware data */
s16 hw_d[3] = { 0 };
acc_data[0] = (I2C_AUTO_INCREMENT | AXISDATA_REG);
err = lsm303dlh_acc_i2c_read(acc, acc_data, 6);
if (err < 0)
return err;
hw_d[0] = (((s16) ((acc_data[1] << 8) | acc_data[0])) >> 4);
hw_d[1] = (((s16) ((acc_data[3] << 8) | acc_data[2])) >> 4);
hw_d[2] = (((s16) ((acc_data[5] << 8) | acc_data[4])) >> 4);
hw_d[0] = hw_d[0] * acc->sensitivity;
hw_d[1] = hw_d[1] * acc->sensitivity;
hw_d[2] = hw_d[2] * acc->sensitivity;
xyz[0] = ((acc->pdata->negate_x) ? (-hw_d[acc->pdata->axis_map_x])
: (hw_d[acc->pdata->axis_map_x]));
xyz[1] = ((acc->pdata->negate_y) ? (-hw_d[acc->pdata->axis_map_y])
: (hw_d[acc->pdata->axis_map_y]));
xyz[2] = ((acc->pdata->negate_z) ? (-hw_d[acc->pdata->axis_map_z])
: (hw_d[acc->pdata->axis_map_z]));
#ifdef DEBUG
/*
printk(KERN_INFO "%s read x=%d, y=%d, z=%d\n",
LSM303DLH_ACC_DEV_NAME, xyz[0], xyz[1], xyz[2]);
*/
#endif
return err;
}
static void lsm303dlh_acc_report_values(struct lsm303dlh_acc_data *acc,
int *xyz)
{
input_report_abs(acc->input_dev, ABS_X, xyz[0]);
input_report_abs(acc->input_dev, ABS_Y, xyz[1]);
input_report_abs(acc->input_dev, ABS_Z, xyz[2]);
input_sync(acc->input_dev);
}
static int lsm303dlh_acc_enable(struct lsm303dlh_acc_data *acc)
{
int err;
if (!atomic_cmpxchg(&acc->enabled, 0, 1)) {
err = lsm303dlh_acc_device_power_on(acc);
if (err < 0) {
atomic_set(&acc->enabled, 0);
return err;
}
schedule_delayed_work(&acc->input_work,
msecs_to_jiffies(acc->pdata->poll_interval));
}
return 0;
}
static int lsm303dlh_acc_disable(struct lsm303dlh_acc_data *acc)
{
if (atomic_cmpxchg(&acc->enabled, 1, 0)) {
cancel_delayed_work_sync(&acc->input_work);
lsm303dlh_acc_device_power_off(acc);
}
return 0;
}
static ssize_t read_single_reg(struct device *dev, char *buf, u8 reg)
{
ssize_t ret;
struct lsm303dlh_acc_data *acc = dev_get_drvdata(dev);
int rc = 0;
u8 data = reg;
rc = lsm303dlh_acc_i2c_read(acc, &data, 1);
/*TODO: error need to be managed */
ret = sprintf(buf, "0x%02x\n", data);
return ret;
}
static int write_reg(struct device *dev, const char *buf, u8 reg)
{
int rc = 0;
struct lsm303dlh_acc_data *acc = dev_get_drvdata(dev);
u8 x[2];
unsigned long val;
if (strict_strtoul(buf, 16, &val))
return -EINVAL;
x[0] = reg;
x[1] = val;
rc = lsm303dlh_acc_i2c_write(acc, x, 1);
/*TODO: error need to be managed */
return rc;
}
static ssize_t attr_get_polling_rate(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int val;
struct lsm303dlh_acc_data *acc = dev_get_drvdata(dev);
mutex_lock(&acc->lock);
val = acc->pdata->poll_interval;
mutex_unlock(&acc->lock);
return sprintf(buf, "%d\n", val);
}
static ssize_t attr_set_polling_rate(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct lsm303dlh_acc_data *acc = dev_get_drvdata(dev);
unsigned long interval_ms;
if (strict_strtoul(buf, 10, &interval_ms))
return -EINVAL;
if (!interval_ms)
return -EINVAL;
mutex_lock(&acc->lock);
acc->pdata->poll_interval = interval_ms;
lsm303dlh_acc_update_odr(acc, interval_ms);
mutex_unlock(&acc->lock);
return size;
}
static ssize_t attr_get_range(struct device *dev,
struct device_attribute *attr, char *buf)
{
char val;
struct lsm303dlh_acc_data *acc = dev_get_drvdata(dev);
char range = 2;
mutex_lock(&acc->lock);
val = acc->pdata->g_range ;
switch (val) {
case LSM303DLH_ACC_G_2G:
range = 2;
break;
case LSM303DLH_ACC_G_4G:
range = 4;
break;
case LSM303DLH_ACC_G_8G:
range = 8;
break;
}
mutex_unlock(&acc->lock);
return sprintf(buf, "%d\n", range);
}
static ssize_t attr_set_range(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct lsm303dlh_acc_data *acc = dev_get_drvdata(dev);
unsigned long val;
if (strict_strtoul(buf, 10, &val))
return -EINVAL;
mutex_lock(&acc->lock);
acc->pdata->g_range = val;
lsm303dlh_acc_update_g_range(acc, val);
mutex_unlock(&acc->lock);
return size;
}
static ssize_t attr_get_enable(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct lsm303dlh_acc_data *acc = dev_get_drvdata(dev);
int val = atomic_read(&acc->enabled);
return sprintf(buf, "%d\n", val);
}
static ssize_t attr_set_enable(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct lsm303dlh_acc_data *acc = dev_get_drvdata(dev);
unsigned long val;
if (strict_strtoul(buf, 10, &val))
return -EINVAL;
if (val)
lsm303dlh_acc_enable(acc);
else
lsm303dlh_acc_disable(acc);
return size;
}
static ssize_t attr_get_selftest(struct device *dev,
struct device_attribute *attr, char *buf)
{
int val;
struct lsm303dlh_acc_data *acc = dev_get_drvdata(dev);
mutex_lock(&acc->lock);
val = acc->selftest_enabled;
mutex_unlock(&acc->lock);
return sprintf(buf, "%d\n", val);
}
static ssize_t attr_set_selftest(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct lsm303dlh_acc_data *acc = dev_get_drvdata(dev);
unsigned long val;
if (strict_strtoul(buf, 10, &val))
return -EINVAL;
lsm303dlh_acc_selftest(acc, val);
return size;
}
static ssize_t attr_set_intconfig1(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
return write_reg(dev, buf, INT_CFG1);
}
static ssize_t attr_get_intconfig1(struct device *dev,
struct device_attribute *attr, char *buf)
{
return read_single_reg(dev, buf, INT_CFG1);
}
static ssize_t attr_set_duration1(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
return write_reg(dev, buf, INT_DUR1);
}
static ssize_t attr_get_duration1(struct device *dev,
struct device_attribute *attr, char *buf)
{
return read_single_reg(dev, buf, INT_DUR1);
}
static ssize_t attr_set_thresh1(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
return write_reg(dev, buf, INT_THS1);
}
static ssize_t attr_get_thresh1(struct device *dev,
struct device_attribute *attr, char *buf)
{
return read_single_reg(dev, buf, INT_THS1);
}
static ssize_t attr_get_source1(struct device *dev,
struct device_attribute *attr, char *buf)
{
return read_single_reg(dev, buf, INT_SRC1);
}
static ssize_t attr_set_intconfig2(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
return write_reg(dev, buf, INT_CFG2);
}
static ssize_t attr_get_intconfig2(struct device *dev,
struct device_attribute *attr, char *buf)
{
return read_single_reg(dev, buf, INT_CFG2);
}
static ssize_t attr_set_duration2(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
return write_reg(dev, buf, INT_DUR2);
}
static ssize_t attr_get_duration2(struct device *dev,
struct device_attribute *attr, char *buf)
{
return read_single_reg(dev, buf, INT_DUR2);
}
static ssize_t attr_set_thresh2(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
return write_reg(dev, buf, INT_THS2);
}
static ssize_t attr_get_thresh2(struct device *dev,
struct device_attribute *attr, char *buf)
{
return read_single_reg(dev, buf, INT_THS2);
}
static ssize_t attr_get_source2(struct device *dev,
struct device_attribute *attr, char *buf)
{
return read_single_reg(dev, buf, INT_SRC2);
}
#ifdef DEBUG
/* PAY ATTENTION: These DEBUG funtions don't manage resume_state */
static ssize_t attr_reg_set(struct device *dev, struct device_attribute *attr,
const char *buf, size_t size)
{
int rc;
struct lsm303dlh_acc_data *acc = dev_get_drvdata(dev);
u8 x[2];
unsigned long val;
if (strict_strtoul(buf, 16, &val))
return -EINVAL;
mutex_lock(&acc->lock);
x[0] = acc->reg_addr;
mutex_unlock(&acc->lock);
x[1] = val;
rc = lsm303dlh_acc_i2c_write(acc, x, 1);
/*TODO: error need to be managed */
return size;
}
static ssize_t attr_reg_get(struct device *dev, struct device_attribute *attr,
char *buf)
{
ssize_t ret;
struct lsm303dlh_acc_data *acc = dev_get_drvdata(dev);
int rc;
u8 data;
mutex_lock(&acc->lock);
data = acc->reg_addr;
mutex_unlock(&acc->lock);
rc = lsm303dlh_acc_i2c_read(acc, &data, 1);
/*TODO: error need to be managed */
ret = sprintf(buf, "0x%02x\n", data);
return ret;
}
static ssize_t attr_addr_set(struct device *dev, struct device_attribute *attr,
const char *buf, size_t size)
{
struct lsm303dlh_acc_data *acc = dev_get_drvdata(dev);
unsigned long val;
if (strict_strtoul(buf, 16, &val))
return -EINVAL;
mutex_lock(&acc->lock);
acc->reg_addr = val;
mutex_unlock(&acc->lock);
return size;
}
#endif
static struct device_attribute attributes[] = {
__ATTR(pollrate_ms, 0666, attr_get_polling_rate, attr_set_polling_rate),
__ATTR(range, 0666, attr_get_range, attr_set_range),
__ATTR(enable_device, 0666, attr_get_enable, attr_set_enable),
__ATTR(enable_selftest, 0666, attr_get_selftest, attr_set_selftest),
__ATTR(int1_config, 0666, attr_get_intconfig1, attr_set_intconfig1),
__ATTR(int1_duration, 0666, attr_get_duration1, attr_set_duration1),
__ATTR(int1_threshold, 0666, attr_get_thresh1, attr_set_thresh1),
__ATTR(int1_source, 0444, attr_get_source1, NULL),
__ATTR(int2_config, 0666, attr_get_intconfig2, attr_set_intconfig2),
__ATTR(int2_duration, 0666, attr_get_duration2, attr_set_duration2),
__ATTR(int2_threshold, 0666, attr_get_thresh2, attr_set_thresh2),
__ATTR(int2_source, 0444, attr_get_source2, NULL),
#ifdef DEBUG
__ATTR(reg_value, 0600, attr_reg_get, attr_reg_set),
__ATTR(reg_addr, 0200, NULL, attr_addr_set),
#endif
};
static int create_sysfs_interfaces(struct device *dev)
{
int i;
for (i = 0; i < ARRAY_SIZE(attributes); i++)
if (device_create_file(dev, attributes + i))
goto error;
return 0;
error:
for ( ; i >= 0; i--)
device_remove_file(dev, attributes + i);
dev_err(dev, "%s:Unable to create interface\n", __func__);
return -1;
}
static int remove_sysfs_interfaces(struct device *dev)
{
int i;
for (i = 0; i < ARRAY_SIZE(attributes); i++)
device_remove_file(dev, attributes + i);
return 0;
}
static void lsm303dlh_acc_input_work_func(struct work_struct *work)
{
struct lsm303dlh_acc_data *acc;
int xyz[3] = { 0 };
int err;
acc = container_of((struct delayed_work *)work,
struct lsm303dlh_acc_data, input_work);
mutex_lock(&acc->lock);
err = lsm303dlh_acc_get_acceleration_data(acc, xyz);
if (err < 0)
dev_err(&acc->client->dev, "get_acceleration_data failed\n");
else
lsm303dlh_acc_report_values(acc, xyz);
schedule_delayed_work(&acc->input_work,
msecs_to_jiffies(acc->pdata->poll_interval));
mutex_unlock(&acc->lock);
}
int lsm303dlh_acc_input_open(struct input_dev *input)
{
struct lsm303dlh_acc_data *acc = input_get_drvdata(input);
return lsm303dlh_acc_enable(acc);
}
void lsm303dlh_acc_input_close(struct input_dev *dev)
{
struct lsm303dlh_acc_data *acc = input_get_drvdata(dev);
lsm303dlh_acc_disable(acc);
}
static int lsm303dlh_acc_validate_pdata(struct lsm303dlh_acc_data *acc)
{
acc->pdata->poll_interval = max(acc->pdata->poll_interval,
acc->pdata->min_interval);
if (acc->pdata->axis_map_x > 2 ||
acc->pdata->axis_map_y > 2 || acc->pdata->axis_map_z > 2) {
dev_err(&acc->client->dev,
"invalid axis_map value x:%u y:%u z%u\n",
acc->pdata->axis_map_x, acc->pdata->axis_map_y,
acc->pdata->axis_map_z);
return -EINVAL;
}
/* Only allow 0 and 1 for negation boolean flag */
if (acc->pdata->negate_x > 1 || acc->pdata->negate_y > 1 ||
acc->pdata->negate_z > 1) {
dev_err(&acc->client->dev,
"invalid negate value x:%u y:%u z:%u\n",
acc->pdata->negate_x, acc->pdata->negate_y,
acc->pdata->negate_z);
return -EINVAL;
}
/* Enforce minimum polling interval */
if (acc->pdata->poll_interval < acc->pdata->min_interval) {
dev_err(&acc->client->dev, "minimum poll interval violated\n");
return -EINVAL;
}
return 0;
}
static int lsm303dlh_acc_input_init(struct lsm303dlh_acc_data *acc)
{
int err;
INIT_DELAYED_WORK(&acc->input_work, lsm303dlh_acc_input_work_func);
acc->input_dev = input_allocate_device();
if (!acc->input_dev) {
err = -ENOMEM;
dev_err(&acc->client->dev, "input device allocation failed\n");
goto err0;
}
acc->input_dev->open = lsm303dlh_acc_input_open;
acc->input_dev->close = lsm303dlh_acc_input_close;
acc->input_dev->name = LSM303DLH_ACC_DEV_NAME;
acc->input_dev->id.bustype = BUS_I2C;
acc->input_dev->dev.parent = &acc->client->dev;
input_set_drvdata(acc->input_dev, acc);
set_bit(EV_ABS, acc->input_dev->evbit);
/* next is used for interruptA sources data if the case */
set_bit(ABS_MISC, acc->input_dev->absbit);
/* next is used for interruptB sources data if the case */
set_bit(ABS_WHEEL, acc->input_dev->absbit);
input_set_abs_params(acc->input_dev, ABS_X, -G_MAX, G_MAX, FUZZ, FLAT);
input_set_abs_params(acc->input_dev, ABS_Y, -G_MAX, G_MAX, FUZZ, FLAT);
input_set_abs_params(acc->input_dev, ABS_Z, -G_MAX, G_MAX, FUZZ, FLAT);
/* next is used for interruptA sources data if the case */
input_set_abs_params(acc->input_dev, ABS_MISC, INT_MIN, INT_MAX, 0, 0);
/* next is used for interruptB sources data if the case */
input_set_abs_params(acc->input_dev, ABS_WHEEL, INT_MIN, INT_MAX, 0, 0);
err = input_register_device(acc->input_dev);
if (err) {
dev_err(&acc->client->dev,
"unable to register input polled device %s\n",
acc->input_dev->name);
goto err1;
}
return 0;
err1:
input_free_device(acc->input_dev);
err0:
return err;
}
static void lsm303dlh_acc_input_cleanup(struct lsm303dlh_acc_data *acc)
{
input_unregister_device(acc->input_dev);
input_free_device(acc->input_dev);
}
static int lsm303dlh_acc_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct lsm303dlh_acc_data *acc;
int err = -1;
//int tempvalue;
pr_info("%s: probe start.\n", LSM303DLH_ACC_DEV_NAME);
if (client->dev.platform_data == NULL) {
dev_err(&client->dev, "platform data is NULL. exiting.\n");
err = -ENODEV;
goto exit_check_functionality_failed;
}
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
dev_err(&client->dev, "client not i2c capable\n");
err = -ENODEV;
goto exit_check_functionality_failed;
}
/*
if (!i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_BYTE |
I2C_FUNC_SMBUS_BYTE_DATA |
I2C_FUNC_SMBUS_WORD_DATA)) {
dev_err(&client->dev, "client not smb-i2c capable:2\n");
err = -EIO;
goto exit_check_functionality_failed;
}
if (!i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_I2C_BLOCK)){
dev_err(&client->dev, "client not smb-i2c capable:3\n");
err = -EIO;
goto exit_check_functionality_failed;
}
*/
acc = kzalloc(sizeof(struct lsm303dlh_acc_data), GFP_KERNEL);
if (acc == NULL) {
err = -ENOMEM;
dev_err(&client->dev,
"failed to allocate memory for module data: "
"%d\n", err);
goto exit_check_functionality_failed;
}
mutex_init(&acc->lock);
mutex_lock(&acc->lock);
acc->client = client;
i2c_set_clientdata(client, acc);
acc->pdata = kmalloc(sizeof(*acc->pdata), GFP_KERNEL);
if (acc->pdata == NULL) {
err = -ENOMEM;
dev_err(&client->dev,
"failed to allocate memory for pdata: %d\n",
err);
goto err_mutexunlock;
}
memcpy(acc->pdata, client->dev.platform_data, sizeof(*acc->pdata));
err = lsm303dlh_acc_validate_pdata(acc);
if (err < 0) {
dev_err(&client->dev, "failed to validate platform data\n");
goto exit_kfree_pdata;
}
if (acc->pdata->init) {
err = acc->pdata->init();
if (err < 0) {
dev_err(&client->dev, "init failed: %d\n", err);
goto err_pdata_init;
}
}
if(acc->pdata->gpio_int1 >= 0){
acc->irq1 = gpio_to_irq(acc->pdata->gpio_int1);
printk(KERN_INFO "%s: %s has set irq1 to irq: %d "
"mapped on gpio:%d\n",
LSM303DLH_ACC_DEV_NAME, __func__, acc->irq1,
acc->pdata->gpio_int1);
}
if(acc->pdata->gpio_int2 >= 0){
acc->irq2 = gpio_to_irq(acc->pdata->gpio_int2);
printk(KERN_INFO "%s: %s has set irq2 to irq: %d "
"mapped on gpio:%d\n",
LSM303DLH_ACC_DEV_NAME, __func__, acc->irq2,
acc->pdata->gpio_int2);
}
memset(acc->resume_state, 0, ARRAY_SIZE(acc->resume_state));
acc->resume_state[RES_CTRL_REG1] = LSM303DLH_ACC_ENABLE_ALL_AXES;
acc->resume_state[RES_CTRL_REG2] = 0x00;
acc->resume_state[RES_CTRL_REG3] = 0x00;
acc->resume_state[RES_CTRL_REG4] = 0x00;
acc->resume_state[RES_CTRL_REG5] = 0x00;
acc->resume_state[RES_REFERENCE] = 0x00;
acc->resume_state[RES_INT_CFG1] = 0x00;
acc->resume_state[RES_INT_THS1] = 0x00;
acc->resume_state[RES_INT_DUR1] = 0x00;
acc->resume_state[RES_INT_CFG2] = 0x00;
acc->resume_state[RES_INT_THS2] = 0x00;
acc->resume_state[RES_INT_DUR2] = 0x00;
err = lsm303dlh_acc_device_power_on(acc);
if (err < 0) {
dev_err(&client->dev, "power on failed: %d\n", err);
goto err_pdata_init;
}
atomic_set(&acc->enabled, 1);
err = lsm303dlh_acc_update_g_range(acc, acc->pdata->g_range);
if (err < 0) {
dev_err(&client->dev, "update_g_range failed\n");
goto err_power_off;
}
err = lsm303dlh_acc_update_odr(acc, acc->pdata->poll_interval);
if (err < 0) {
dev_err(&client->dev, "update_odr failed\n");
goto err_power_off;
}
err = lsm303dlh_acc_input_init(acc);
if (err < 0) {
dev_err(&client->dev, "input init failed\n");
goto err_power_off;
}
err = create_sysfs_interfaces(&client->dev);
if (err < 0) {
dev_err(&client->dev,
"device LSM303DLH_ACC_DEV_NAME "
"sysfs register failed\n");
goto err_input_cleanup;
}
lsm303dlh_acc_device_power_off(acc);
/* As default, do not report information */
atomic_set(&acc->enabled, 0);
if(acc->pdata->gpio_int1 >= 0){
INIT_WORK(&acc->irq1_work, lsm303dlh_acc_irq1_work_func);
acc->irq1_work_queue =
create_singlethread_workqueue("lsm303dlh_acc_wq1");
if (!acc->irq1_work_queue) {
err = -ENOMEM;
dev_err(&client->dev,
"cannot create work queue1: %d\n", err);
goto err_remove_sysfs_int;
}
err = request_irq(acc->irq1, lsm303dlh_acc_isr1,
IRQF_TRIGGER_RISING, "lsm303dlh_acc_irq1", acc);
if (err < 0) {
dev_err(&client->dev, "request irq1 failed: %d\n", err);
goto err_destoyworkqueue1;
}
disable_irq_nosync(acc->irq1);
}
if(acc->pdata->gpio_int2 >= 0){
INIT_WORK(&acc->irq2_work, lsm303dlh_acc_irq2_work_func);
acc->irq2_work_queue =
create_singlethread_workqueue("lsm303dlh_acc_wq2");
if (!acc->irq2_work_queue) {
err = -ENOMEM;
dev_err(&client->dev,
"cannot create work queue2: %d\n", err);
goto err_free_irq1;
}
err = request_irq(acc->irq2, lsm303dlh_acc_isr2,
IRQF_TRIGGER_RISING, "lsm303dlh_acc_irq2", acc);
if (err < 0) {
dev_err(&client->dev, "request irq2 failed: %d\n", err);
goto err_destoyworkqueue2;
}
disable_irq_nosync(acc->irq2);
}
mutex_unlock(&acc->lock);
dev_info(&client->dev, "%s: probed\n", LSM303DLH_ACC_DEV_NAME);
return 0;
err_destoyworkqueue2:
if(acc->pdata->gpio_int2 >= 0)
destroy_workqueue(acc->irq2_work_queue);
err_free_irq1:
free_irq(acc->irq1, acc);
err_destoyworkqueue1:
if(acc->pdata->gpio_int1 >= 0)
destroy_workqueue(acc->irq1_work_queue);
err_remove_sysfs_int:
remove_sysfs_interfaces(&client->dev);
err_input_cleanup:
lsm303dlh_acc_input_cleanup(acc);
err_power_off:
lsm303dlh_acc_device_power_off(acc);
err_pdata_init:
if (acc->pdata->exit)
acc->pdata->exit();
exit_kfree_pdata:
kfree(acc->pdata);
err_mutexunlock:
mutex_unlock(&acc->lock);
//err_freedata:
kfree(acc);
exit_check_functionality_failed:
printk(KERN_ERR "%s: Driver Init failed\n", LSM303DLH_ACC_DEV_NAME);
return err;
}
static int __devexit lsm303dlh_acc_remove(struct i2c_client *client)
{
struct lsm303dlh_acc_data *acc = i2c_get_clientdata(client);
if(acc->pdata->gpio_int1 >= 0){
free_irq(acc->irq1, acc);
gpio_free(acc->pdata->gpio_int1);
destroy_workqueue(acc->irq1_work_queue);
}
if(acc->pdata->gpio_int2 >= 0){
free_irq(acc->irq2, acc);
gpio_free(acc->pdata->gpio_int2);
destroy_workqueue(acc->irq2_work_queue);
}
lsm303dlh_acc_input_cleanup(acc);
lsm303dlh_acc_device_power_off(acc);
remove_sysfs_interfaces(&client->dev);
if (acc->pdata->exit)
acc->pdata->exit();
kfree(acc->pdata);
kfree(acc);
return 0;
}
#ifdef CONFIG_PM
static int lsm303dlh_acc_resume(struct i2c_client *client)
{
struct lsm303dlh_acc_data *acc = i2c_get_clientdata(client);
if (acc->on_before_suspend)
return lsm303dlh_acc_enable(acc);
return 0;
}
static int lsm303dlh_acc_suspend(struct i2c_client *client, pm_message_t mesg)
{
struct lsm303dlh_acc_data *acc = i2c_get_clientdata(client);
acc->on_before_suspend = atomic_read(&acc->enabled);
return lsm303dlh_acc_disable(acc);
}
#else
#define lis3dh_acc_suspend NULL
#define lis3dh_acc_resume NULL
#endif
static const struct i2c_device_id lsm303dlh_acc_id[]
= { { LSM303DLH_ACC_DEV_NAME, 0}, { },};
MODULE_DEVICE_TABLE(i2c, lsm303dlh_acc_id);
static struct i2c_driver lsm303dlh_acc_driver = {
.driver = {
.owner = THIS_MODULE,
.name = LSM303DLH_ACC_DEV_NAME,
},
.probe = lsm303dlh_acc_probe,
.remove = __devexit_p(lsm303dlh_acc_remove),
.resume = lsm303dlh_acc_resume,
.suspend = lsm303dlh_acc_suspend,
.id_table = lsm303dlh_acc_id,
};
static int __init lsm303dlh_acc_init(void)
{
printk(KERN_DEBUG "%s accelerometer driver: init\n",
LSM303DLH_ACC_DEV_NAME);
return i2c_add_driver(&lsm303dlh_acc_driver);
}
static void __exit lsm303dlh_acc_exit(void)
{
#ifdef DEBUG
printk(KERN_DEBUG "%s accelerometer driver exit\n",
LSM303DLH_ACC_DEV_NAME);
#endif
i2c_del_driver(&lsm303dlh_acc_driver);
return;
}
module_init(lsm303dlh_acc_init);
module_exit(lsm303dlh_acc_exit);
MODULE_DESCRIPTION("lsm303dlh accelerometer sysfs driver");
MODULE_AUTHOR("Matteo Dameno, Carmine Iascone, STMicroelectronics");
MODULE_LICENSE("GPL");