Initial commit
This commit is contained in:
428
mm/sparse.c
Executable file
428
mm/sparse.c
Executable file
@@ -0,0 +1,428 @@
|
||||
/*
|
||||
* sparse memory mappings.
|
||||
*/
|
||||
#include <linux/mm.h>
|
||||
#include <linux/mmzone.h>
|
||||
#include <linux/bootmem.h>
|
||||
#include <linux/highmem.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/spinlock.h>
|
||||
#include <linux/vmalloc.h>
|
||||
#include <asm/dma.h>
|
||||
#include <asm/pgalloc.h>
|
||||
#include <asm/pgtable.h>
|
||||
|
||||
/*
|
||||
* Permanent SPARSEMEM data:
|
||||
*
|
||||
* 1) mem_section - memory sections, mem_map's for valid memory
|
||||
*/
|
||||
#ifdef CONFIG_SPARSEMEM_EXTREME
|
||||
struct mem_section *mem_section[NR_SECTION_ROOTS]
|
||||
____cacheline_internodealigned_in_smp;
|
||||
#else
|
||||
struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
|
||||
____cacheline_internodealigned_in_smp;
|
||||
#endif
|
||||
EXPORT_SYMBOL(mem_section);
|
||||
|
||||
#ifdef NODE_NOT_IN_PAGE_FLAGS
|
||||
/*
|
||||
* If we did not store the node number in the page then we have to
|
||||
* do a lookup in the section_to_node_table in order to find which
|
||||
* node the page belongs to.
|
||||
*/
|
||||
#if MAX_NUMNODES <= 256
|
||||
static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
|
||||
#else
|
||||
static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
|
||||
#endif
|
||||
|
||||
int page_to_nid(struct page *page)
|
||||
{
|
||||
return section_to_node_table[page_to_section(page)];
|
||||
}
|
||||
EXPORT_SYMBOL(page_to_nid);
|
||||
|
||||
static void set_section_nid(unsigned long section_nr, int nid)
|
||||
{
|
||||
section_to_node_table[section_nr] = nid;
|
||||
}
|
||||
#else /* !NODE_NOT_IN_PAGE_FLAGS */
|
||||
static inline void set_section_nid(unsigned long section_nr, int nid)
|
||||
{
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_SPARSEMEM_EXTREME
|
||||
static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
|
||||
{
|
||||
struct mem_section *section = NULL;
|
||||
unsigned long array_size = SECTIONS_PER_ROOT *
|
||||
sizeof(struct mem_section);
|
||||
|
||||
if (slab_is_available())
|
||||
section = kmalloc_node(array_size, GFP_KERNEL, nid);
|
||||
else
|
||||
section = alloc_bootmem_node(NODE_DATA(nid), array_size);
|
||||
|
||||
if (section)
|
||||
memset(section, 0, array_size);
|
||||
|
||||
return section;
|
||||
}
|
||||
|
||||
static int __meminit sparse_index_init(unsigned long section_nr, int nid)
|
||||
{
|
||||
static DEFINE_SPINLOCK(index_init_lock);
|
||||
unsigned long root = SECTION_NR_TO_ROOT(section_nr);
|
||||
struct mem_section *section;
|
||||
int ret = 0;
|
||||
|
||||
if (mem_section[root])
|
||||
return -EEXIST;
|
||||
|
||||
section = sparse_index_alloc(nid);
|
||||
if (!section)
|
||||
return -ENOMEM;
|
||||
/*
|
||||
* This lock keeps two different sections from
|
||||
* reallocating for the same index
|
||||
*/
|
||||
spin_lock(&index_init_lock);
|
||||
|
||||
if (mem_section[root]) {
|
||||
ret = -EEXIST;
|
||||
goto out;
|
||||
}
|
||||
|
||||
mem_section[root] = section;
|
||||
out:
|
||||
spin_unlock(&index_init_lock);
|
||||
return ret;
|
||||
}
|
||||
#else /* !SPARSEMEM_EXTREME */
|
||||
static inline int sparse_index_init(unsigned long section_nr, int nid)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Although written for the SPARSEMEM_EXTREME case, this happens
|
||||
* to also work for the flat array case because
|
||||
* NR_SECTION_ROOTS==NR_MEM_SECTIONS.
|
||||
*/
|
||||
int __section_nr(struct mem_section* ms)
|
||||
{
|
||||
unsigned long root_nr;
|
||||
struct mem_section* root;
|
||||
|
||||
for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
|
||||
root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
|
||||
if (!root)
|
||||
continue;
|
||||
|
||||
if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
|
||||
break;
|
||||
}
|
||||
|
||||
return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
|
||||
}
|
||||
|
||||
/*
|
||||
* During early boot, before section_mem_map is used for an actual
|
||||
* mem_map, we use section_mem_map to store the section's NUMA
|
||||
* node. This keeps us from having to use another data structure. The
|
||||
* node information is cleared just before we store the real mem_map.
|
||||
*/
|
||||
static inline unsigned long sparse_encode_early_nid(int nid)
|
||||
{
|
||||
return (nid << SECTION_NID_SHIFT);
|
||||
}
|
||||
|
||||
static inline int sparse_early_nid(struct mem_section *section)
|
||||
{
|
||||
return (section->section_mem_map >> SECTION_NID_SHIFT);
|
||||
}
|
||||
|
||||
/* Record a memory area against a node. */
|
||||
void __init memory_present(int nid, unsigned long start, unsigned long end)
|
||||
{
|
||||
unsigned long max_arch_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
|
||||
unsigned long pfn;
|
||||
|
||||
/*
|
||||
* Sanity checks - do not allow an architecture to pass
|
||||
* in larger pfns than the maximum scope of sparsemem:
|
||||
*/
|
||||
if (start >= max_arch_pfn)
|
||||
return;
|
||||
if (end >= max_arch_pfn)
|
||||
end = max_arch_pfn;
|
||||
|
||||
start &= PAGE_SECTION_MASK;
|
||||
for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
|
||||
unsigned long section = pfn_to_section_nr(pfn);
|
||||
struct mem_section *ms;
|
||||
|
||||
sparse_index_init(section, nid);
|
||||
set_section_nid(section, nid);
|
||||
|
||||
ms = __nr_to_section(section);
|
||||
if (!ms->section_mem_map)
|
||||
ms->section_mem_map = sparse_encode_early_nid(nid) |
|
||||
SECTION_MARKED_PRESENT;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Only used by the i386 NUMA architecures, but relatively
|
||||
* generic code.
|
||||
*/
|
||||
unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
|
||||
unsigned long end_pfn)
|
||||
{
|
||||
unsigned long pfn;
|
||||
unsigned long nr_pages = 0;
|
||||
|
||||
for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
|
||||
if (nid != early_pfn_to_nid(pfn))
|
||||
continue;
|
||||
|
||||
if (pfn_present(pfn))
|
||||
nr_pages += PAGES_PER_SECTION;
|
||||
}
|
||||
|
||||
return nr_pages * sizeof(struct page);
|
||||
}
|
||||
|
||||
/*
|
||||
* Subtle, we encode the real pfn into the mem_map such that
|
||||
* the identity pfn - section_mem_map will return the actual
|
||||
* physical page frame number.
|
||||
*/
|
||||
static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
|
||||
{
|
||||
return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
|
||||
}
|
||||
|
||||
/*
|
||||
* We need this if we ever free the mem_maps. While not implemented yet,
|
||||
* this function is included for parity with its sibling.
|
||||
*/
|
||||
static __attribute((unused))
|
||||
struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
|
||||
{
|
||||
return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
|
||||
}
|
||||
|
||||
static int __meminit sparse_init_one_section(struct mem_section *ms,
|
||||
unsigned long pnum, struct page *mem_map,
|
||||
unsigned long *pageblock_bitmap)
|
||||
{
|
||||
if (!present_section(ms))
|
||||
return -EINVAL;
|
||||
|
||||
ms->section_mem_map &= ~SECTION_MAP_MASK;
|
||||
ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
|
||||
SECTION_HAS_MEM_MAP;
|
||||
ms->pageblock_flags = pageblock_bitmap;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
static unsigned long usemap_size(void)
|
||||
{
|
||||
unsigned long size_bytes;
|
||||
size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
|
||||
size_bytes = roundup(size_bytes, sizeof(unsigned long));
|
||||
return size_bytes;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_MEMORY_HOTPLUG
|
||||
static unsigned long *__kmalloc_section_usemap(void)
|
||||
{
|
||||
return kmalloc(usemap_size(), GFP_KERNEL);
|
||||
}
|
||||
#endif /* CONFIG_MEMORY_HOTPLUG */
|
||||
|
||||
static unsigned long *__init sparse_early_usemap_alloc(unsigned long pnum)
|
||||
{
|
||||
unsigned long *usemap;
|
||||
struct mem_section *ms = __nr_to_section(pnum);
|
||||
int nid = sparse_early_nid(ms);
|
||||
|
||||
usemap = alloc_bootmem_node(NODE_DATA(nid), usemap_size());
|
||||
if (usemap)
|
||||
return usemap;
|
||||
|
||||
/* Stupid: suppress gcc warning for SPARSEMEM && !NUMA */
|
||||
nid = 0;
|
||||
|
||||
printk(KERN_WARNING "%s: allocation failed\n", __FUNCTION__);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
#ifndef CONFIG_SPARSEMEM_VMEMMAP
|
||||
struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
|
||||
{
|
||||
struct page *map;
|
||||
|
||||
map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
|
||||
if (map)
|
||||
return map;
|
||||
|
||||
map = alloc_bootmem_node(NODE_DATA(nid),
|
||||
sizeof(struct page) * PAGES_PER_SECTION);
|
||||
return map;
|
||||
}
|
||||
#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
|
||||
|
||||
struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
|
||||
{
|
||||
struct page *map;
|
||||
struct mem_section *ms = __nr_to_section(pnum);
|
||||
int nid = sparse_early_nid(ms);
|
||||
|
||||
map = sparse_mem_map_populate(pnum, nid);
|
||||
if (map)
|
||||
return map;
|
||||
|
||||
printk(KERN_ERR "%s: sparsemem memory map backing failed "
|
||||
"some memory will not be available.\n", __FUNCTION__);
|
||||
ms->section_mem_map = 0;
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/*
|
||||
* Allocate the accumulated non-linear sections, allocate a mem_map
|
||||
* for each and record the physical to section mapping.
|
||||
*/
|
||||
void __init sparse_init(void)
|
||||
{
|
||||
unsigned long pnum;
|
||||
struct page *map;
|
||||
unsigned long *usemap;
|
||||
|
||||
for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
|
||||
if (!present_section_nr(pnum))
|
||||
continue;
|
||||
|
||||
map = sparse_early_mem_map_alloc(pnum);
|
||||
if (!map)
|
||||
continue;
|
||||
|
||||
usemap = sparse_early_usemap_alloc(pnum);
|
||||
if (!usemap)
|
||||
continue;
|
||||
|
||||
sparse_init_one_section(__nr_to_section(pnum), pnum, map,
|
||||
usemap);
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef CONFIG_MEMORY_HOTPLUG
|
||||
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
||||
static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
|
||||
unsigned long nr_pages)
|
||||
{
|
||||
/* This will make the necessary allocations eventually. */
|
||||
return sparse_mem_map_populate(pnum, nid);
|
||||
}
|
||||
static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
|
||||
{
|
||||
return; /* XXX: Not implemented yet */
|
||||
}
|
||||
#else
|
||||
static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
|
||||
{
|
||||
struct page *page, *ret;
|
||||
unsigned long memmap_size = sizeof(struct page) * nr_pages;
|
||||
|
||||
page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
|
||||
if (page)
|
||||
goto got_map_page;
|
||||
|
||||
ret = vmalloc(memmap_size);
|
||||
if (ret)
|
||||
goto got_map_ptr;
|
||||
|
||||
return NULL;
|
||||
got_map_page:
|
||||
ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
|
||||
got_map_ptr:
|
||||
memset(ret, 0, memmap_size);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
|
||||
unsigned long nr_pages)
|
||||
{
|
||||
return __kmalloc_section_memmap(nr_pages);
|
||||
}
|
||||
|
||||
static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
|
||||
{
|
||||
if (is_vmalloc_addr(memmap))
|
||||
vfree(memmap);
|
||||
else
|
||||
free_pages((unsigned long)memmap,
|
||||
get_order(sizeof(struct page) * nr_pages));
|
||||
}
|
||||
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
|
||||
|
||||
/*
|
||||
* returns the number of sections whose mem_maps were properly
|
||||
* set. If this is <=0, then that means that the passed-in
|
||||
* map was not consumed and must be freed.
|
||||
*/
|
||||
int sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
|
||||
int nr_pages)
|
||||
{
|
||||
unsigned long section_nr = pfn_to_section_nr(start_pfn);
|
||||
struct pglist_data *pgdat = zone->zone_pgdat;
|
||||
struct mem_section *ms;
|
||||
struct page *memmap;
|
||||
unsigned long *usemap;
|
||||
unsigned long flags;
|
||||
int ret;
|
||||
|
||||
/*
|
||||
* no locking for this, because it does its own
|
||||
* plus, it does a kmalloc
|
||||
*/
|
||||
ret = sparse_index_init(section_nr, pgdat->node_id);
|
||||
if (ret < 0 && ret != -EEXIST)
|
||||
return ret;
|
||||
memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
|
||||
if (!memmap)
|
||||
return -ENOMEM;
|
||||
usemap = __kmalloc_section_usemap();
|
||||
if (!usemap) {
|
||||
__kfree_section_memmap(memmap, nr_pages);
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
pgdat_resize_lock(pgdat, &flags);
|
||||
|
||||
ms = __pfn_to_section(start_pfn);
|
||||
if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
|
||||
ret = -EEXIST;
|
||||
goto out;
|
||||
}
|
||||
|
||||
ms->section_mem_map |= SECTION_MARKED_PRESENT;
|
||||
|
||||
ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
|
||||
|
||||
out:
|
||||
pgdat_resize_unlock(pgdat, &flags);
|
||||
if (ret <= 0) {
|
||||
kfree(usemap);
|
||||
__kfree_section_memmap(memmap, nr_pages);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
#endif
|
||||
Reference in New Issue
Block a user